[1] 岳昊, 刘晓玲, 孟晓雨, 等. 拥堵道路网的静态交通流非均衡分配方法[J]. 北京交通大学学报, 2017, 41(3):
1-6. [YUE H, LIU X L, MENG X Y, et al. A nonequilibrium method to solve static traffic assignment
problem at the congested road network[J]. Journal of
Beijing Jiaotong University, 2017, 41(3): 1-6.]
[2] 岳昊, 张鹏, 刘晓玲, 等. 拥堵路网交通流均衡分配模型[J]. 哈尔滨工业大学学报, 2019, 51(9): 103-109.[YUE H, ZHANG P, LIU X L, et al. The equilibrium
model for congested traffic assignment in road networks
[J]. Journal of Harbin Institute of Technology, 2019, 51
(9): 103-109.]
[3] 程琳, 王炜. 拥堵交通网络模型和增强拉格朗日乘子算法[J]. 管理科学学报, 2006, 9(5): 18-27. [CHENG L,
WANG W. Congested traffic network model and
enhanced Lagrange multiplier algorithm[J]. Journal of
Management Science in China, 2006, 9(5): 18-27.]
[4] 张雄飞, 李瑞敏, 郭旭明, 等. 带转向延误的拥挤交通网络配流模型及算法[J].清华大学学报(自然科学版),
2012, 52(6): 848-853. [ZHANG X F, LI R M, GUO X M,
et al. Traffic assignment problem model with turning
delays for congested networks[J]. Journal of Tsinghua
University (Natural Science Edition), 2012, 52(6): 848-
853.]
[5] 刘晓玲. 拥堵交通流分配和道路网络容量计算理论与方法研究[D]. 北京: 北京交通大学, 2017. [LIU X L.
Research on theory and method of congested traffic flow
assignment and road network capacity calculation[D].
Beijing: Beijing Jiaotong University, 2017.]
[6] BELL M G H. Stochastic user equilibrium assignment in
networks with queues[J]. Transportation Research Part B,
1995, 29(2): 125-137.
[7] MAHMASSANI H S, CHANG G L. On boundedly
rational user equilibrium intransportation systems[J].
Transportation Science, 1987, 21(2): 89-99.
[8] SHEFFI Y, POWELL W B. An algorithm for the
equilibrium assignment problem with random link times
[J]. Networks, 2010, 12(2): 191-207.
[9] 刘诗序, 陈文思, 阎昊, 等. 有限理性下考虑出发时间选择的网络交通流演化[J]. 交通运输系统工程与信息, 2017, 17(3): 127-135. [LIU S X, CHEN W S, YAN
H, et al. Network traffic flow evolution considering
departure time choice based on bounded rationality[J].
Journal of Transportation Systems Engineering and
Information Technology, 2017, 17(3): 127-135.]
[10] 张新洁, 关宏志, 赵磊, 等. 有限理性视野下出行者出行方式选择分层Logit模型研究[J]. 交通运输系统工程与信息, 2018, 18(6): 110-116. [ZHANG X J, GUAN H
Z, ZHAO L, et al. Nested Logit model on travel mode
choice under boundebly rational view[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2018, 18(6): 110-116.]
[11] ZHANG J, YANG H. Modeling route choice inertia in
network equilibrium with heterogeneous prevailing
choice sets[J]. Transportation Research Part C, 2015, 57:
42-54.
[12] ROGERS B W, PALFREY T R, CAMERER C F.
Heterogeneous quantal response equilibrium and
cognitive hierarchies[J]. Journal of Economic Theory,
2009, 144(4): 1440-1467.
[13] CHEN H C, FRIEDMAN J W, THISSE J F. Boundedly
rational nash equilibrium: Aprobabilisticchoice approach
[J]. Games and Economic Behavior, 1997, 18(1): 32-54.
[14] LONG X Q, HOU C X, LIU S S, et al. Sequential route
choice modeling based on dynamic reference points and
its empirical study[J]. Discrete Dynamics in Nature and
Society, 2020, 8081576: 1-11.
[15] CHORUS C G. A new model of random regret
minimization[J]. European Journal of Transportand
Infrastructure Research, 2010,10(2): 181-196.
[16] DI X, LIU H X, ZHU S, et al. Indifference bands for
boundedly rational route switching[J]. Transportation,
2016, 44(5): 1169-1194.
|