[1]陈喜群,朱奕璋,吕朝锋.基于混合近端策略优化的交叉口信号相位与配时优化方法[J].交通运输系统工程与信息,2023,23(1):106-113. [CHENXQ, ZHUYZ,
LVCF.Signalphaseandtimingoptimizationmethodfor
intersection based on hybrid proximal policy optimization
[J]. Journal of Transportation Systems Engineering and
Information Technology, 2023, 23(1): 106-113.]
[2]WU Q, ZHANG L, SHEN J, et al. Efficient pressure:
Improving efficiency for signalized intersections[J].
ArXiv, 2021. DOI: 10.48550/arXiv.2112.02336.
[3]ZHANG L, WU Q, SHEN J, et al. Expression might be
enough: Representing pressure and demand for
reinforcement learning based traffic signal control[C]//
International Conference on Machine Learning. PMLR,
2022: 26645-26654.
[4]OROOJLOOY A, NAZARI M, HAJINEZHAD D, et al.
Attendlight: Universal attention-based reinforcement
learning model for traffic signal control[J]. Advances in
Neural Information Processing Systems, 2020, 33: 4079
4090.
[5]唐慕尧,周大可,李涛.结合状态预测的深度强化学习交通信号控制[J].计算机应用研究,2022,39(8):2311
2315. [TANG M Y, ZHOU D K, LI T. Traffic signal
control with deep reinforcement learning combined with
state prediction[J]. Application Research of Computers,
2022, 39(8): 2311-2315.]
[6]马东方,陈曦,吴晓东,等.基于强化学习的干线信号混合协同优化方法[J]. 交通运输系统工程与信息,
2022, 22(2): 145-153. [MA D F, CHEN X, WU X D,
et al. Mixed-coordinated decision-making method for
arterial signals based on reinforcement learning[J].
Journal of Transportation Systems Engineering and
Information Technology, 2022, 22(2): 145-153.]
[7]刘利军,王州,余臻.一种改进的深度确定性策略梯度网络交通信号控制系统[J].四川大学学报(自然科学版), 2021, 58(4): 93-99. [LIU L J, WANG Z, YU Z. An
improved deep deterministic policy gradient network
traffic signal control system[J]. Journal of Sichuan
University(Natural Science Edition), 2021, 58(4): 93-99.]
[8]YU P, LUO J. Minimize pressure difference traffic signal
control based on deep reinforcement learning[C]//2022
41st Chinese Control Conference (CCC), IEEE, 2022:
5493-5498.
[9] MA D, ZHOU B, SONG X, et al. A deep reinforcement
learning approach to traffic signal control with temporal
traffic
pattern mining[J]. IEEE Transactions on
Intelligent Transportation Systems, 2021, 23(8): 11789
11800.
[10] 任安妮, 周大可,冯锦浩,等.基于注意力机制的深度强化学习交通信号控制[J].计算机应用研究,2023,40
(2): 430-434. [REN A N, ZHOU D K, FENG J H, et al.
Attention mechanism-based deep reinforcement learning
traffic
signal control[J]. Application Research of
Computers, 2023, 40(2): 430-434.]
[11] GE Z. Reinforcement learning-based signal control
strategies to improve travel efficiency at urban
intersection[C]//2020 International Conference on Urban
Engineering and Management Science (ICUEMS), IEEE,
2020: 347-351.
[12] ZHU Y, CAI M, SCHWARZ C, et al. Intelligent traffic
light via policy-based deep reinforcement learning
[J]. International Journal of Intelligent Transportation
Systems Research, 2022. DOI: 10.1007/S13177-022
00321-5.
[13] LI Y, HE J, GAO Y. Intelligent traffic signal control with
deep reinforcement learning at single intersection[C]//
2021 7th International Conference on Computing and
Artificial Intelligence, 2021: 399-406.
[14] 刘智敏, 叶宝林,朱耀东,等.基于深度强化学习的交通信号控制方法[J].浙江大学学报(工学版),2022,56
(6): 1249-1256. [LIU Z M, YE B L, ZHU Y D, et al.
Traffic
signal
control
method based on deep
reinforcement learning[J]. Journal of Zhejiang University
(Engineering Science), 2022, 56(6):1249-1256.]
[15] WANG X, GIRSHICK R, GUPTA A, et al. Non-local
neural networks[C]//Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018:
7794-7803.
[16] JIE H, LI S, GANG S. Squeeze-and-excitation networks
[C]// 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, 2018.
[17] CAO Y, XU J, LIN S, et al. GCNet: Non-local networks
meet squeeze-excitation networks and beyond[C]// 2019
IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), IEEE, 2020.
[18] ZHENG G, XIONG Y, ZANG X, et al. Learning phase
competition for traffic signal control[C]//Proceedings of
the 28th ACM International Conference on Information
and Knowledge Management, 2019: 1963-1972.
[19] WEI H, XU N, ZHANG H, et al. Colight: Learning
network-level cooperation for traffic signal control[C]//
Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019:
1913-1922.
[20] ZHAO C, HU X,WANG G. PRGLight: A novel traffic
light
control
framework
with
pressure-based
reinforcement learning and graph neural network[C]. In
IJCAI 2021 Reinforcement Learning for Intelligent
Transportation Systems (RL4ITS) Workshop, 2021.
[21] FUJIMOTO S, GU S S. A minimalist approach to offline
reinforcement
learning[J].
Advances in Neural
Information Processing Systems, 2021, 34: 20132-20145.
|