[1]李立,徐志刚,赵祥模,等.智能网联汽车运动规划方法研究综述[J]. 中国公路学报,2019,32(6): 20-33. [LI
L, XU Z G, ZHAO X M, et al. Review of motion planning
methods of intelligent connected vehicles[J]. China
Journal of Highway and Transport, 2019, 32(6): 20-33.]
[2]
鹿应荣,许晓彤,丁川,等.车联网环境下信号交叉口车速控制策略[J].交通运输系统工程与信息,2018,18
(1): 50-58, 95. [LU Y R, XU X T, DING C, et al. A
speed control strategy at signalized intersection under
connected
vehicle
environment[J].
Journal
of
Transportation Systems Engineering and Information
Technology, 2018, 18(1): 50-58, 95.]
[3]高志波,吴志周,郝威,等.智能网联车环境下交叉口车流轨迹优化模型[J]. 交通运输系统工程与信息,
2021, 21(2): 91-97. [GAO Z B, WU Z Z, HAO W, et al.
Vehicle trajectory optimization model for intersection
under the connected and automated vehicles environment
[J]. Journal of Transportation Systems Engineering and
Information Technology, 2021, 21(2): 91-97.]
[4] LIU M, HOOGENDOORN S, WANG M. Receding
horizon cooperative platoon trajectory planning on
corridors with dynamic traffic signal[J]. Transportation
Research Record, 2020, 2674(12): 324-338.
[5]
孙伟,张梦雅,马成元,等.新型混合交通交叉口信号与车辆轨迹协同控制方法[J].交通运输系统工程与信息, 2023, 23(1): 97-105. [SUN W, ZHANG M Y, MA C
Y, et al. Coordination of signal and vehicle trajectory at
intersections for mixed traffic flow[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(1): 97-105.]
[6] LIU M, ZHAO J, HOOGENDOORN S, et al. A single
layer approach for joint optimization of traffic signals and
cooperative vehicle trajectories at isolated intersections
[J].
Transportation Research Part C: Emerging
Technologies, 2022, 134: 1-19.
[7] LI Z, ELEFTERIADOU L, RANKA S. Signal control
optimization for automated vehicles at isolated signalized
intersections[J].
Transportation Research Part C:
Emerging Technologies, 2014, 49: 1-18.
[8] FENG Y, YU C, LIU H X. Spatiotemporal intersection
control in a connected and automated vehicle
environment[J].
Transportation Research Part C:
Emerging Technologies, 2018, 89: 364-383.
[9]
ZHOU Y, WANG M, AHN S. Distributed model
predictive control approach for cooperative car-following
with
guaranteed
local
and string stability[J].
Transportation Research Part B: Methodological, 2019,
128: 69-86.
[10] GUO J H, LUO Y G, LI K Q. Adaptive fuzzy sliding mode
control for coordinated longitudinal and lateral motions
of multiple autonomous vehicles in a platoon[J]. Science
China Technological Sciences, 2017, 60(4): 576-586.
[11] GAO F, LI S E, ZHENG Y, et al. Robust control of
heterogeneous vehicular platoon with uncertain dynamics
and communication delay[J]. IET Intelligent Transport
Systems, 2016, 10(7): 503-513.
[12] ALNAJDI A, SURYAVANSHI A, ALHAJERI M S, et al.
Machine learning-based predictive control of nonlinear
time-delay systems: Closed-loop stability and input delay
compensation[J]. Digital Chemical Engineering, 2023, 7:
100084.
[13] KAMAL M A S, MUKAI M, MURATA J, et al. Ecological
vehicle control on roads with up-down slopes[J]. IEEE
Transactions on Intelligent Transportation Systems,
2011, 12(3): 783-794.
[14] HOOGENDOORN S, HOOGENDOORN R, WANG M,
et al. Modeling driver, driver support, and cooperative
systems with dynamic optimal control[J]. Transportation
Research Record: Journal of the Transportation Research
Board, 2012, 2316(1): 20-30.
[15] WANG M, DAAMEN W, HOOGENDOORN S P, et al.
Rolling horizon control framework for driver assistance
systems. Part II: Cooperative sensing and cooperative
control[J]. Transportation Research Part C: Emerging
Technologies, 2014, 40: 290-311.
|