[1] 胡立伟, 吕一帆, 赵雪亭, 等. 基于数据驱动的交通事故伤害程度影响因素及其耦合关系研究[J]. 交通运输系统工程与信息, 2022, 22(5): 117-124, 134. [HU L W,
LV Y F, ZHAO X T, et al. Influence factors and coupling
relationship of traffic accident injury degree based on
a data-driven approach[J]. Journal of Transportation
Systems Engineering and Information Technology, 2022,22(5): 117-124, 134.]
[2] ABOU ELASSAD Z E, MOUSANNIF H, Al
MOATASSIME H. A real-time crash prediction fusion
framework: An imbalance-aware strategy for collision
avoidance systems[J]. Transportation Research Part C:
Emerging Technologies, 2020, 118: 102708.
[3] ZENG Q, WANG Q, ZHANG K, et al. Analysis of the
injury severity of motor vehicle-pedestrian crashes at
urban intersections using spatiotemporal logistic
regression models[J]. Accident Analysis & Prevention,
2023, 189: 107119.
[4] FANG Z, YUAN R, XIANG Q. An exploratory
investigation into the influence of risk factors on driver
injury severity in angle crashes: A random parameter
bivariate ordered probit model approach[J]. Traffic Injury
Prevention, 2024, 25(1): 70-77.
[5] 刘明远. 基于机器学习的高速公路交通事故影响因素分析与预测研究[D]. 北京: 北京交通大学, 2022. [LIU
M Y. Research on influence factor analysis and
prediction of freeway traffic accident based on machine
learning[D]. Beijing: Beijing Jiaotong University, 2022.]
[6] 杨文臣, 周燕宁, 田毕江, 等. 基于聚类分析和SVM的二级公路交通事故严重度预测[J]. 中国安全科学学报, 2022, 32(5): 163-169. [YANG W C, ZHOU Y N,
TIAN B J, et al. Traffic accident severity prediction for
secondary highways based on cluster analysis and SVM
model[J]. China Safety Science Journal, 2022, 32(5):
163-169.]
[7] WU P, CHEN T, WONG Y D, et al. Exploring key spatiotemporal features of crash risk hot spots on urban road
network: A machine learning approach[J]. Transportation
Research Part A: Policy and Practice, 2023, 173:
103717.
[8] ATUMO E A, FANG T, JIANG X. Spatial statistics and
random forest approaches for traffic crash hot spot
identification and prediction[J]. International Journal of
Injury Control and Safety Promotion, 2022, 29(2): 207-
216.
[9] 杨洋, 邵哲平, 赵强, 等. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. [YANG Y, SHAO Z P,
ZHAO Q, et al. Geographical spatial distribution and
risk prediction of maritime traffic accidents in port of
Xiamen[J]. Journal of Geo-Information Science, 2022, 24
(9): 1676-1687.]
[10] MA Z, MEI G, CUOMO S. An analytic framework usingdeep learning for prediction of traffic accident injury
severity based on contributing factors[J]. Accident
Analysis & Prevention, 2021, 160: 106322.
[11] LI L, LIN Y, DU B, et al. Real-time traffic incident
detection based on a hybrid deep learning model[J].
Transportmetrica A: Transport Science, 2022, 18(1): 78-
98.
[12] MOHAMMED R, RAWASHDEH J, ABDULLAH M.
Machine learning with oversampling and undersampling
techniques: Overview study and experimental results[C]//
2020 11th International Conference on Information and
Communication Systems (ICICS), IEEE, 2020: 243-248.
[13] CHAWLA N V, BOWYER K W, HALL L O, et al.
SMOTE: Synthetic minority over-sampling technique[J].
Journal of Artificial Intelligence Research, 2002, 16:
321-357.
[14] PARSA A B, TAGHIPOUR H, DERRIBLE S, et al. Realtime accident detection: Coping with imbalanced data[J].
Accident Analysis & Prevention, 2019, 129: 202-210.
[15] YUAN Z, ZHOU X, YANG T. Hetero-convlstm: A deep
learning approach to traffic accident prediction on
heterogeneous spatio-temporal data[C]// Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018: 984-992.
|