Journal of Transportation Systems Engineering and Information Technology ›› 2022, Vol. 22 ›› Issue (6): 1-14.DOI: 10.16097/j.cnki.1009-6744.2022.06.001
Previous Articles Next Articles
CHEN De-shan*1a,2, FAN Teng-ze1b,2, YUAN Hai-wen1a,2, YAN Xin-ping1a,1b,2,3
Received:
2022-07-23
Revised:
2022-08-31
Accepted:
2022-09-05
Online:
2022-12-25
Published:
2022-12-22
Supported by:
陈德山*1a,2,范腾泽1b,2,元海文1a,2,严新平1a,1b,2,3
作者简介:
陈德山(1986- ),男,安徽舒城人,副研究员,博士。
基金资助:
CLC Number:
CHEN De-shan, FAN Teng-ze, YUAN Hai-wen, YAN Xin-ping. Review and Prospect on System Operation Supervision Technology of Inland River Navigation System[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 1-14.
陈德山, 范腾泽, 元海文, 严新平. 内河航运系统监管技术现状与展望[J]. 交通运输系统工程与信息, 2022, 22(6): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.tseit.org.cn/EN/10.16097/j.cnki.1009-6744.2022.06.001
[1] KOTOWSKA I, MAŃKOWSKA M, PLUCIŃSKI M. Inland shipping to serve the hinterland: The challenge for seaport authorities[J]. Sustainability, 2018, 10(10): 103468. [2] 严新平. 内河新一代航运系统构建的思考[J]. 中国水运, 2021, 5: 6-8. [YAN X P. Thinking on the construction of a new generation of inland river shipping system[J]. China Water Transport, 2021, 5: 6-8.] [3] 中华人民共和国交通运输部.内河航运发展纲要[R].北京: 交通运输部, 2020. [Ministry of Transport of the People's Republic of China. Outline of inland waterway navigation development[R]. Beijing: Ministry of Transport, 2020.] [4] 何新华. 内河航运系统体系框架设计的关键问题研究[D]. 上海: 同济大学, 2007. [HE X H. Study on key issues in the framework design of inland river shipping system[D]. Shanghai: Tongji University, 2007.] [5] WANG J, LI J Y. Inland waterway transport in the pearl river basin, China[J]. Lespace Géographique, 2012, 41 (3): 196-209. [6] STYHRE L, WINNES H. Energy efficient port calls: A study of Wedish shipping with international outlooks[R]. Sweden: IVL Swedish Environmental Research Institute, 2016. [7] SANTOS T A, FONSECA M Â, MARTINS P, et al. Integrating short sea shipping with trans-European transport networks[J]. Journal of Marine Science and Engineering, 2022, 10: 10020218. [8] JOHN O, BURMEISTER H C, BRODJE A, et al. Assessing the MONALISA 2.0 Concept: Establishment of the european maritime simulation network[C]. Hamburg: International Symposium on Information on Ships, 2014. [9] WU Z, REN C, WU X, et al. Research on digital twin construction and safety management application of inland waterway based on 3D video fusion[J]. IEEE Access, 2021, 99: 1-1. [10] LI L, LU W, NIU J, et al. AIS data-based decision model for navigation risk in sea areas[J]. Journal of Navigation, 2018, 71(3): 664-678. [11] 黄亮, 文元桥, 周春辉, 等. 基于GIS和AIS的水上交通宏观态势评估系统[J]. 中国航海, 2017, 40(1): 53-57. [HUANG L, WEN Y Q, ZHOU C H, et al. Water traffic macro situation assessment system based on GIS and AIS [J]. Navigation of China, 2017, 40(1): 53-57.] [12] FUJI J, TANAKA K. Traffic capacity[J]. Journal of Navigation, 1971, 24(4): 543-652. [13] WANG N, MENG X, XU Q, et al. An intelligent spatial collision risk based on the quaternion ship domain[J]. Journal of Navigation, 2010, 63: 733-749. [14] GOERLANDT F, MONTEWKA J, ZHANG W, et al. An analysis of ship escort and convoy operations in ice conditions[J]. Safety Eence, 2017, 95: 198-209. [15] BUKHARI A C, TUSSEYEVA I, LEE B G, et al. An intelligent real-time multi-vessel collision risk assessment system from VTS view point based on fuzzy inference system[J]. Expert Systems with Applications, 2013, 40(4): 1220-1230. [16] KANG L J, LU Z Y, MENG Q, et al. Maritime simulator based determination of minimum DCPA and TCPA in head-on ship-to-ship collision avoidance in confined waters[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1124-1144. [17] 文元桥, 吴定勇, 张恒, 等. 水上交通系统安全模态定义与建模[J]. 中国安全科学学报, 2013, 23(6): 32-38. [WEN Y Q, WU D Y, ZHANG H, et al. Safety modal definition and modeling of water transportation system[J]. China Safety Science Journal, 2013, 23(6): 32-38.] [18] BUKHARI A C, TUSSEYEVA I, LEE B G, et al. An intelligent real-time multi-vessel collision risk assessment system from VTS view point based on fuzzy inference system[J]. Expert Systems with Applications, 2013, 40(4): 1220-1230. [19] YU H C, FANG Z, MURRAY A T, et al. A directionconstrained space-time prism-based approach for quantifying possible multi- ship collision risks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 99: 1-11. [20] JIA C F, MA J, HE M R, et al. Motion primitives learning of ship-ship interaction patterns in encounter situations [J]. Ocean Engineering, 2022, 247: 110708. [21] WANG S, ZHANG Y, ZHENG Y. Multi-ship encounter situation adaptive understanding by individual navigation intention inference[J]. Ocean Engineering, 2021, 237: 109612. [22] ZHEN R, SHI Z Q, LIU J L, et al. A novel arena-based regional collision risk assessment method of multi-ship encounter situation in complex waters[J]. Ocean Engineering, 2022, 246: 110531. [23] SUI Z Y, WEN Y Q, HUANG Y M, et al. Node importance evaluation in marine traffic situation complex network for intelligent maritime supervision[J]. Ocean Engineering, 2022, 247: 110742. [24] 兰培真, 刘旺盛, 刘晓佳, 等. 低轨卫星自动识别系统在海事监管中的应用[J]. 中国航海, 2012, 35(2): 11- 14. [LAN P Z, LIU W S, LIU X J, et al. Application of low orbit satellite automatic identification system in maritime supervision[J]. Navigation of China, 2012, 35(2): 11-14.] [25] 张绍明, 桂坡坡, 刘伟杰, 等. 基于高分辨率遥感影像的内河航标自动检测方法[J]. 同济大学学报自然科学版, 2014, 1: 136-143. [ZHANG S M, GUI P P, LIU W J, et al. Automatic detection method of river navigational markers based on high resolution remote sensing image [J]. Journal of Tongji University Natural Science Edition, 2014, 1: 136-143.] [26] GERBEN P, MARCUS K, AFZAL M R, et al. An unmanned inland cargo vessel: Design, build, and experiments[J]. Ocean Engineering, 2020, 201: 107056. [27] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807-817. [YAN X P, LIU C G. Development status and trend of intelligent shipping system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807-817.] [28] ZHANG J, WAN C, HE A, et al. A two-stage black-spot identification model for inland waterway transportation [J]. Reliability Engineering and System Safety, 2021, 9: 107677. [29] XUE J, PAPADIMITRIOU E, RENIERS G, et al. A comprehensive statistical investigation framework for characteristics and causes analysis of ship accidents: A case study in the fluctuating backwater area of three gorges reservoir region[J]. Ocean Engineering, 2021, 229: 108981. [30] 王莹, 欧阳文全, 赵建, 等. 船舶防撞预警视频监测技术在淮河入海航道的应用[J]. 中国水运, 2018, 18(2): 51-52. [WANG Y, OUYANG W Q, ZHAO J, et al. Application of video monitoring technology for ship collision prevention in Huaihe river channel[J]. China Water Transport, 2018, 18(2): 51-52.] [31] CHEN X, WANG S, SHI C, et al. Robust ship tracking via multi-view learning and sparse representation[J]. Journal of Navigation, 2019, 72(1): 176-192. [32] YU Q, TEIXEIRA A P, LIU K, et al. Framework and application of multi-criteria ship collision risk assessment [J]. Ocean Engineering, 2022, 250: 111006. [33] CAI M, ZHANG J, ZHANG D, et al. Collision risk analysis on ferry ships in Jiangsu section of the Yangtze river based on AIS data[J]. Reliability Engineering & System Safety, 2021, 215: 107901. [34] BOTTS C H. A novel metric for detecting anomalous ship behavior using a variation of the DBSCAN clustering algorithm[J]. SN Computer Science, 2021, 2(5): 1-16. [35] HUANG G, LAI S, YE C, et al. Ship trajectory anomaly detection based on multi-feature fusion[C]. Chicago: IEEE International Conference on Smart Data Services (SMDS), 2021. [36] VRIES G D, SOMEREN M V. Recognizing vessel movements from historical data[M]. Springer New York, 2013. [37] KELLY P. A novel technique to identify AIS transmissions from vessels which attempt to obscure their position by switching their AIS transponder from normal transmit power mode to low transmit power mode[J]. Expert Systems with Applications, 2022, 202: 117205. [38] ABEBE M, NOH Y, KANG Y J, et al. Ship trajectory planning for collision avoidance using hybrid ARIMALSTM models[J]. Ocean Engineering, 2022, 256: 111527. [39] WU B, YIP T L, YAN X P, et al. Fuzzy logic based approach for ship-bridge collision alert system[J]. Ocean Engineering, 2019, 187: 106152. [40] GAO M, SHI G Y. Ship collision avoidance anthropomorphic decision-making for structured learning based on AIS with Seq-CGAN[J]. Ocean Engineering, 2020, 217: 107922. [41] 刘铁君, 郭小飞. 基于“北斗+物联网+AIS技术”的水上安全监管系统研发与应用[J]. 中国海事, 2021, 6: 61- 63. [LIU T J, GUO X F. Research and application of water safety supervision system based on“Beidou + Internet of Things + AIS technology”[J]. China Maritime Safety, 2021, 6: 61-63.] [42] FEI P, CHU X, GENG X, et al. A inland waterway monitoring virtual-GIS system based on multi heterogeneous navigation data fusion[C]//2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China: IEEE, 2021, 15: 618-621. [43] 魏丹. 基于机器学习的交通状态判别与预测方法[D]. 长 春: 吉林大学, 2020. [WEI D. Traffic state discrimination and prediction method based on machine learning[D]. Changchun: Jilin University, 2020.] [44] 人民交通. 破除“肠梗阻”建设三峡水运新通道[DB/ OL]. 北京: 人民交通网, (2021-07-27) [2022-07-14]. http: //www. rmjtxw. com/news/shuiyun/160560. html. [People's Traffic. A new water transport channel for the Three Gorges will be built by removing intestinal obstruction[DB/OL]. Beijing: People's Transportation Network, (2021-07-27) [2022-07-14]. http: //www. rmjtxw.com/news/shuiyun/160560.html.] [45] 范中洲. 船舶定线制优选方法的研究[D]. 大连: 大连海事大学, 2013. [FAN Z Z. Research on optimization method of ship alignment system[D]. Dalian: Dalian Maritime University, 2013.] [46] ZHANG X, LI R, CHEN X, et al. Multi-object-based vessel traffic scheduling optimisation in a compound waterway of a large harbour[J]. Journal of Navigation, 2018, 72(3): 1-19. [47] BUKHARI A C, TUSSEYEVA I, LEE B G, et al. An intelligent real-time multi-vessel collision risk assessment system from VTS view point based on fuzzy inference system[J]. Expert Systems with Applications, 2013, 40(4): 1220-1230. [48] ZHANG X, LIN J, GUO Z, et al. Vessel transportation scheduling optimization based on channel-berth coordination[J]. Ocean Engineering, 2016, 112: 145-152. [49] 郑红星, 朱徐涛, 李振飞. 双向航道集装箱港口船舶调度优化算法[J]. 计算机应用, 2021, 41(10): 3049-3055. [ZHENG H X, ZHU X T, LI Z F. Optimization algorithm of vessel scheduling in container port of bidirectional channel[J]. Computer Application, 2021, 41(10): 3049- 3055.] [50] LIU B L, LI Z C, WANG Y D, et al. Short-term berth planning and ship scheduling for a busy seaport with channel restrictions[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 154: 102467. [51] DENG Y, SHENG D, LIU B. Managing ship lock congestion in an inland waterway: A bottleneck model with a service time window[J]. Transport Policy, 2021, 112: 142-161. [52] 徐晓帆, 王妮炜, 高璎园, 等. 陆海空天一体化信息网络发展研究[J]. 中国工程科学, 2021, 23(2): 39-45. [XU X F, WANG N W, GAO Y Y, et al. Research on the development of land based, sea based, air based and space based integrated information network[J]. Strategic Study of CAE, 2021, 23(2): 39-45.] [53] BONNIN P F, ORTIZ A. On the use of robots and vision technologies for the inspection of vessels: A survey on recent advances[J]. Ocean Engineering, 2019, 190: 106420. [54] MOU J M, ZHOU C, DU Y, et al. Evaluate VTS benefits: A case study of Zhoushan port[J]. International Journal of e-Navigation and Maritime Economy, 2015, 3: 22-31. [55] 中华人名共和国交通运输部. 全要素水上“大交管”建设方案发布[DB/OL]. 北京: 中国交通新闻网, (2021- 09-28) [2022-07-14]. http: //big5. mot. gov.cn/gate/big5/ www. mot. gov. cn/jiaotongyaowen/202109/t20210928_ 3620220. html. 2021. [Ministry of Transport of the People's Republic of China. The construction plan of "large traffic control" on all-factor water was released[DB/ OL]. Beijing: China Transportation News Network, (2021-09-28) [2022-07-14]. http://big5.mot.gov.cn/gate/ big5/ www. mot. gov. cn/ jiaotongyaowen/ 202109/ t20210928_3620220.html. 2021.] [56] 魏曦, 杨保岑, 叶劲松, 等. 基于内河电子航道图制作和应用的内河航道要素分类体系研究[J]. 中国水运, 2015, 15(8): 41-43. [WEI X, YANG B C, YE J S, et al. Study on classification system of inland waterway elements based on making and application of inland waterway electronic waterway map[J]. China Water Transport, 2015, 15(8): 41-43.] [57] SZLAPCZYNSKI R, SZLAPCZYNSKA J. A ship domainbased model of collision risk for near-miss detection and collision alert systems[J]. Reliability Engineering & System Safety, 2021, 214: 107766. [58] CAO Y, ZHANG W, ZHU Y, et al. Impact of trends in river discharge and ocean tides on water level dynamics in the Pearl river delta[J]. Coastal Engineering, 2020, 157: 103634. [59] LEE K, HUI P M, WANG B H, et al. Effects of announcing global information in a two-route traffic flow model[J]. Journal of the Physical Society of Japan, 2003, 70(12): 3507-3510. [60] 严新平, 李晨, 刘佳仑, 等. 新一代航运系统体系架构与关键技术研究[J]. 交通运输系统工程与信息, 2021, 21(5): 22-29. [YAN X P, LI C, LIU J L, et al. Research on architecture and key technology of new generation shipping system[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 22-29.] [61] 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 5: 485-489. [WANG F Y. Parallel systems approach and management and control of complex systems[J]. Control and Decision, 2004, 5: 485- 489.] [62] TAO F, ZHANG H, QI Q L, et al. Ten questions towards digital twin: Analysis and thinking[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 1-17. [63] 严新平, 褚端峰, 刘佳仑, 等. 智能交通发展的现状, 挑战与展望[J]. 交通运输研究, 2021, 7(6): 2-10. [YAN X P, CHU D F, LIU J L, et al. Current situation, challenge and prospect of intelligent transportation development[J]. Transport Research, 2021, 7(6): 2-10.] [64] 陈圆圆. 基于平行数据的交通预测和社会交通信息提取方法研究[D]. 北京: 中国科学院大学, 2018. [CHEN Y Y. Research on traffic prediction and social traffic information extraction based on parallel data[D]. Beijing: University of Chinese Academy of Sciences, 2018.] [65] 刘腾, 于会龙, 田滨, 等. 智能车的智能指挥与控制:基本方法与系统结构[J]. 指挥与控制学报, 2018, 4(1): 22-31. [LIU T, YU H L, TIAN B, et al. Intelligent command and control for intelligent vehicles: Basic methods and system architecture[J]. Journal of Command and Control, 2018, 4(1): 22-31.] [66] 严新平, 王树武, 马枫. 智能货运船舶研究现状与发展思考[J]. 中国舰船研究, 2021, 16(1): 1-6. [YAN X P, WANG S W, MA F. Intelligent cargo ship research status and development thinking[J]. Chinese Journal of Ship Research, 2021, 16(1): 1-6.] |
[1] | GAO Tian-hang, XU Xing, WU Hong-yu, BI Shan-shan, TIAN Jia. Division Model of Container Port Hinterland Considering Shippers' Behavior Decisions [J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 10-16. |
[2] | LI Xiao-dong, KUANG Hai-bo, HE Hong-yua. Evolutionary Game Analysis of Port and Shipping System Emission Reduction Under Government Regulation [J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 17-29. |
[3] | LIANG Jing, ZHANG Lin, LIU Yu-xuan. Emission Reduction Strategy Research of Port and Shipping Enterprises Considering Carbon Emission Policies [J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 39-47. |
[4] | LI Zhi-ping, ZHAO Nan, YIN Ming, ZHEN Hong. Construction of Port and Shipping Logistics Information System Based on Production Berth Resource Sharing [J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 275-283. |
[5] | LIU Chang, ZHANG Shi-ze, LI Bei-ying, LI Bo. Typical Ship Trajectory Extraction Method Considering Ground Speed and Heading [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 114-123. |
[6] | ZHANG Hao, TAO Ning-rong, YANG Nan. Emergencies Materials Dispatching of Offshore Oil Spill with Time-varying Properties [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 269-280. |
[7] | GAO Pan , LIU Shun , ZHAO Xu , YU Hao. Bi-objective Optimization of Ship Dam-passing Appointment Scheduling Considering Green Navigation [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 293-299. |
[8] | LV Jing , QI Hai-di, LI Bao-de. Extended Belief Rule Based System for Risk Prediction of Pirate Attacks [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 247-254. |
[9] | LIAO Shi-guan , WENG Jin-xian, HU Shen-ping. A Capacity Estimation Approach for Waterway Traffic Under LNG Carriers Navigation Mode [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 290-297. |
[10] | JIN Zhi-hong , YAN Hong , WANG Xiao-han , XING Lei, XU Qi. Scheduling Optimization and Operation Mode Analysis on Ro-ro Tractor-and-trailer Transportation [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 142-151. |
[11] | LI De-chang, YANG Hua-long , ZHAO Shuai-qi, ZHENG Jian-feng. Joint Optimization of Vessel Scheduling and Refueling for Container Liner Shipping in Emission Control Areas [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 273-281. |
[12] | SHAO Fei , ZHANG Yong-feng , ZHEN Hong. Invulnerability Simulation Analysis of Chinese Iron Ore Imports Shipping Network [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 311-321. |
[13] | PENG Zi-xuan , YU Bin. Shipping Network Design for Waterbuses of Domestic and Foreign Trade in Yangtze River Economic Belt [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 322-331. |
[14] | GE Ying-en, WEN Xin. A Review of Environmentally Sustainable Container Liner Shipping Management [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 6-22. |
[15] | CHU Jin-hua, LI Jun-he , WANG Chun-juan , CHEN Chao. Integrated Decision on Route Planning and Speed Scheduling of Container Liners Considering Emission Control Areas [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 230-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||