Journal of Transportation Systems Engineering and Information Technology ›› 2023, Vol. 23 ›› Issue (2): 128-138.DOI: 10.16097/j.cnki.1009-6744.2023.02.014

Previous Articles     Next Articles

Investigating Influencing Factors on Metro-bus Transfer Demand Incorporating Spatial Heterogeneity Based on Multi-source Data

ZHENG Yue1, GAO Liang-peng*2, CHEN Xue-wu3   

  1. 1. School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. School of Transportation, Fujian University of Technology, Fuzhou 350118, China; 3. School of Transportation, Southeast University, Nanjing 211189, China
  • Received:2022-12-11 Revised:2023-01-19 Accepted:2023-01-30 Online:2023-04-25 Published:2023-04-19
  • Supported by:
    National Natural Science Foundation of China (52102381);The Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province (TJZ221042);Fujian Natural Science Foundation (2020J05194)

基于多源数据的地铁公交换乘量影响因素与空间异质性分析

郑乐1,高良鹏*2,陈学武3   

  1. 1. 南京邮电大学,现代邮政学院,南京 210023;2. 福建工程学院,交通运输学院,福州 350118; 3. 东南大学,交通学院,南京 211189
  • 作者简介:郑乐(1992- ),男,江苏南京人,讲师,博士
  • 基金资助:
    国家自然科学基金(52102381);江苏省高校哲学社会科学一般项目(TJZ221042);Fujian Natural Science Foundation (2020J05194)

Abstract: As an important part of multi-mode public transport, the transfer between metro and bus is a key link for urban passenger transport integration. Based on the multi-source data of Nanjing City, this paper analyzes the transfer demand between the metro and bus. To better understand the forming mechanism of the transfer demand, a multi-scale geographically weighted regression (MGWR) model was constructed to reveal the impact and spatial heterogeneity of four kinds of factors, including shared bicycle usage, bus supply characteristics, transfer accessibility, and subway network characteristics. The results show that the MGWR model has stronger explanatory power than the linear regression model and the geographically weighted regression (GWR) model, and the influencing factors of metro-bus transfer volume have significant spatial heterogeneity. The increase in bus operation shifts and the number of accessible bus stops can significantly promote the metro-bus transfer. The number of residential POIs promotes the transfer demand, while the number of enterprise POIs inhibits the transfer demand in suburban areas. Shared bicycle usage is revealed to be negatively correlated with the metro-bus transfer demand, especially in suburban areas.

Key words: urban traffic, spatial heterogeneity analysis, multi-scale geographically weighted regression(MGWR) model, transfer demand, network structure, land use

摘要: 作为多模式公交的重要组成部分,地铁与地面公交的衔接换乘是城市客运交通一体化的关键环节。本文基于南京市多源数据分析地铁与公交之间的换乘需求,以地铁公交换乘量为因变量构建多尺度地理加权回归模型,揭示地铁站点周边共享单车使用量、公交供给特性、换乘可达性以及地铁网络特性对换乘需求的影响及其空间异质性。研究结果表明:多尺度地理加权回归模型相比于线性回归模型以及传统的地理加权回归模型具有更强的解释力,地铁公交换乘量的影响因素具有显著的空间异质性;公交运营班次供给以及可达站点数量的提升能够促进地铁公交间的换乘;公交站点周边住宅型POI(Point of Interest)数量在城市外围区域对换乘量起到促进作用,企业型POI数量则对换乘量起到抑制作用;共享单车借用量会抑制地铁与公交之间的换乘需求,特别是在与中心城区联系紧密的城市外围区域。

关键词: 城市交通, 空间异质性分析, 多尺度地理加权回归模型, 换乘需求, 网络结构, 土地利用

CLC Number: