[1] 徐猛, 刘涛, 钟绍鹏, 等. 城市智慧公交研究综述与展望[J]. 交通运输系统工程与信息, 2022, 22(2): 91-108.
[XU M, LIU T, ZHONG S P, et al. Urban smart public
transport studies: A review and prospect[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(2): 91-108.]
[2] WU S, ZHUANG Y, CHEN J, et al. Rethinking bus-tometro accessibility in new town development: Case
studies in Shanghai[J]. Cities, 2019, 94: 211-224.
[3] 杨敏, 吴静娴, 赵静瑶, 等. 城市轨道交通多方式组合出行与接驳设施优化[J]. 城市交通, 2017, 15(5): 64-
69, 77. [YANG M, WU J X, ZHAO J Y, et al. Optimizing
multimodal transfer facility design for urban rail transit
service[J]. Urban Transport of China, 2017, 15(5): 64-
69, 77.]
[4] CHENG Y H, TSENG W C. Exploring the effects
of perceived values, free bus transfer, and penalties
on intermodal metro-bus transfer users' intention[J].
Transport Policy, 2016, 47: 127-138.
[5] GAN Z, YANG M, ZENG Q, et al. Associations between
built environment, perceived walk ability/bike ability
and metro transfer patterns[J]. Transportation Research
Part A: Policy and Practice, 2021, 153: 171-187.
[6] ZHAO D, WANG W, LI C, et al. Recognizing metro-bus
transfers from smart card data[J]. Transportation
Planning and Technology, 2019, 42(1): 70-83.
[7] CHEN E, ZHANG W, YE Z, et al. Unraveling latent transfer patterns between metro and bus from large-scale
smart card data[J]. IEEE Transactions on Intelligent
Transportation Systems, 2020, 23(4): 3351-3365.
[8] 顾天奇, 邓雄成, 陈敏, 等. 多源数据驱动的轨道交通与公交换乘特征和服务范围研究[J]. 交通与运输,2021, 37(6): 6-10. [GU T Q, DENG X C, CHEN M, et al.
Interchange characteristics and service areas between
mass transit and bus based on multi-data driven
methodology[J]. Traffic & Transportation, 2021, 37(6):
6-10.]
[9] 管娜娜, 王波. 基于公交 IC 卡数据的成都市地铁与常规道路公交换乘客流特征分析[J]. 城市轨道交通研究, 2018, 21(9): 148-150. [GUAN N N, WANG B.
Characteristics of transfer passenger flow between metro
and conventional bus based on IC card data in Chengdu
city[J]. Urban Mass Transit, 2018, 21(9): 148-150.]
[10] 王文静, 陈艳艳, 汪一泓. 基于泰森多边形的地铁换乘量生成模型及影响因素分析[J]. 公路交通科技, 2021,
38(10): 137-143. [WANG W J, CHEN Y Y, WANG Y H.
A generation model of metro transfer flow and analysis on
its influencing factors based on Voronoi polygons[J].
Journal of Highway and Transportation Research and
Development, 2021, 38(10): 137-143.]
[11] LIU D, RONG W, ZHANG J, et al. Exploring the
nonlinear effects of built environment on bus-transfer
ridership: Take Shanghai as an example[J]. Applied
Sciences, 2022, 12(11): 5755.
[12] PAN Y, CHEN S, LI T, et al. Exploring spatial variation
of the bus stop influence zone with multi-source data: A
case study in Zhenjiang, China[J]. Journal of Transport
Geography, 2019, 76: 166-177.
[13] QIAN X, UKKUSURI S V. Spatial variation of the urban
taxi ridership using GPS data[J]. Applied Geography,
2015, 59: 31-42.
[14] BAO J, LIU P, QIN X, et al. Understanding the effects of
trip patterns on spatially aggregated crashes with largescale taxi GPS data[J]. Accident Analysis & Prevention,
2018, 120: 281-294.
[15] 于瀚辰, 沈体雁, 孙童. 中国ICT设备制造业的动态空间分异[J]. 地域研究与开发, 2019, 38(1): 1-5. [YU H
C, SHEN T Y, SUN T. Spatiotemporal heterogeneity of
ICT equipment manufacturing industry in China[J]. Areal
Research and Development, 2019, 38(1): 1-5.]
[16] FOTHERINGHAM A S, YANG W, KANG W. Multiscale
geographically weighted regression (MGWR) [J]. Annals
of the American Association of Geographers, 2017, 107
(6): 1247-1265.
[17] SHI Z, ZHANG N, LIU Y, et al. Exploring spatiotemporal
variation in hourly metro ridership at station level: The
influence of built environment and topological structure
[J]. Sustainability, 2018, 10(12): 4564.
[18] HE Y, ZHAO Y, TSUI K L. Geographically modeling and
understanding factors influencing transit ridership: An
empirical study of Shenzhen metro[J]. Applied Sciences,
2019, 9(20): 4217.
|