[1] MOTTER A E, LAI Y C. Cascade-based attacks on
complex networks[J]. Physical Review E: Statistical,
Nonlinear, and Soft Matter Physics, 2002, 66(6/2):
065102.
[2] CHEN H, ZHANG L, LIU Q, et al. Simulation-based
vulnerability assessment in transit systems with cascade
failures[J]. Journal of Cleaner Production, 2021, 295:
126441.
[3] WANG Y, CHEN T. Measure vulnerability of metro
network under cascading failure[J]. IEEE Access, 2020,
9: 683-692.
[4] 种鹏云, 帅斌. 危险品运输关联网络级联失效建模及耦合特性[J]. 交通运输系统工程与信息, 2015, 15(5):
150-156. [CHONG P Y, SHUAI B. Cascading failure
model and coupling properties for interdependent
networks of hazardous materials transportation[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2015, 15(5): 150-156.]
[5] 关晓光, 李振福, 丁超君, 等. 世界集装箱港口复杂网络级联失效下的鲁棒性分析[J]. 中国航海, 2021, 44
(2): 84-89. [GUAN X G, LI Z F, DING C J. Robustness
of global network of container terminals[J]. Navigation of
China, 2021, 44(2): 84-89.]
[6] WANG S, YANG Y, SUN L, et al. Controllability
robustness against cascading failure for complex logistic
network based on dynamic cascading failure model[J].
IEEE Access, 2020, 8: 127450-127461.
[7] 王亚琨, 薛宗杭. 海上丝绸之路集装箱航线网络级联抗毁性研究[J]. 物流工程与管理, 2022, 44(9): 79-83,
78. [WANG Y K, XUE Z H. Research on cascading
invulnerability of container route networks on the
Maritime Silk Road[J]. Logistics Engineering and
Management, 2022, 44(9): 79-83, 78.]
[8] 许波桅, 唐灿璇, 李军军. 级联失效下海港—陆港集装箱运输网络鲁棒性分析[J]. 交通运输系统工程与信息, 2023, 23(3): 265-279. [XU B W, TANG C X, LI
J J. Robustness analysis of seaport-dry port container
transport networks under cascading failure[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(3): 265-279.]
[9] 王超峰, 王德龙. 考虑机场等级的机场网络级联失效抗毁性研究[J]. 安全与环境学报, 2022, 22(1): 43-50.
[WANG C F, WANG D L. Safety influencing factors of
transmission line crossover construction: Based on improved DEMATEL[J]. Journal of Safety and
Environment, 2022, 22(1): 43-50.]
[10] 章强, 陈舜.“双碳”战略背景下绿色航运走廊建设路径研究[J]. 航海, 2022(3): 3- 6. [ZHANG Q, CHEN S.
Research on the construction path of green shipping
corridor under the background of "double-carbon"
strategy [J]. Navigation, 2022(3): 3-6.]
[11] BOUMAN A E, LINDSTAD E, RIALLAND I A, et al.
State-of-the-art technologies, measures, and potential for
reducing GHG emissions from shipping: A review[J].
Transportation Research Part D, 2017, 52(1): 11-20.
[12] WAN Z, GE J, CHEN J. Energy-saving potential and an
economic feasibility analysis for an arctic route between
shanghai and rotterdam: Case study from China's largest
container sea freight operator[J]. Sustainability, 2018,
10: 921.
[13] DANIEL H, TROVAO J P F, WILLIANMS D. Shore
power as a first step toward shipping decarbonization and
related policy impact on a dry bulk cargo carrier[J].
Etransportation, 2022, 11: 100150.
|