交通运输系统工程与信息 ›› 2021, Vol. 21 ›› Issue (6): 33-41.DOI: 10.16097/j.cnki.1009-6744.2021.06.005

• 智能交通系统与信息技术 • 上一篇    下一篇

基于图自编码-生成对抗网络的路网数据修复

徐东伟*1,彭航1,商学天1,魏臣臣1,杨艳芳2   

  1. 1. 浙江工业大学,网络空间安全研究院,杭州310023;2. 交通运输部科学研究院,北京 100029
  • 收稿日期:2021-07-30 修回日期:2021-08-13 接受日期:2021-09-08 出版日期:2021-12-25 发布日期:2021-12-21
  • 作者简介:徐东伟(1985- ),男,山东威海人,副教授,博士。
  • 基金资助:
    国家自然科学基金青年科学基金;浙江省自然科学基金;综合交通运输大数据应用技术交通运输行业重点实验室开放课题基金

Road Network Data Repair Based on Graph Autoencoder-generative Adversarial Network

XU Dong-wei*1 , PENG Hang1 , SHANG Xue-tian 1 , WEI Chen-chen 1 , YANG Yan-fang 2   

  1. 1. Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou 310023, China; 2. Scientific Research Institute of the Ministry of Transport, Beijing 100029, China
  • Received:2021-07-30 Revised:2021-08-13 Accepted:2021-09-08 Online:2021-12-25 Published:2021-12-21
  • Supported by:
    National Natural Science Foundation of China (61903334);Zhejiang Provincial Natural Science Foundation(LY21F030016)Open Foundation of Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport(2020B1205)。

摘要: 完整的交通路网数据是实现智能交通系统的前提,故本文提出一种基于图自编码-生成对 抗网络的方法对路网中缺失数据进行修复。首先,通过降噪图变分自编码器提取路网缺失数据 的时空特征,使其能最大程度捕获原始路网信息;其次,基于该时空特征利用生成对抗网络生成 路网数据,加入重建损失并优化生成对抗网络的目标函数,实现对缺失数据的有效插补;最后,采 用西雅图(Seattle)和加州(PEMS04)路网速度数据集,针对不同缺失类型和缺失率下的数据修复进 行对比实验。当随机缺失率在 10% ~70%时,Seattle 数据集的 MAE 指标在 2.38~3.25 之间, PEMS04 数据集的 MAE 指标在 1.46~2.38 之间;当聚集缺失率在 10%~70%时,Seattle 数据集的 MAE指标在2.51~2.82之间,PEMS04数据集的MAE指标在1.52~1.54之间。对比结果表明,本文 提出的路网数据修复方法均优于BP、DSAE、BGCP等模型。

关键词: 智能交通, 数据修复, 图自编码器, 生成对抗网络, 时空特征, 深度学习

Abstract:  The completeness of the traffic and road network data affects the operation of the intelligent transportation systems. This paper proposes a method based on graph autoencoder-generative adversarial network to repair the missing data in the road network. First, the spatiotemporal features of the missing road network data are extracted through the denoising graph variational autoencoder which captures the original road network information to the greatest extent. Then, based on the spatial-temporal features, the study uses the generative adversarial network to generate repaired road network data, adds reconstruction Loss, and optimizes the objective function of the generation of the confrontation network. The effective interpolation of missing data is then realized. This study uses the Seattle (Seattle) and California (PEMS04) road network speed datasets to conduct comparative experiments on data restoration with different missing types and missing rates. When the random missing rate is between 10% and 70% , the mean absolute error(MAE) index of the Seattle dataset is between 2.38 and 3.25. The MAE index of the PEMS04 data set is between 1.46 and 2.38. When the aggregated missing rate is between 10% and 70%, the MAE index of the Seattle data set is between 2.51 and 2.82. The MAE index of the PEMS04 data set is between 1.52 and 1.54. The comparison results show that the proposed road network data restoration methods perform better than the backpropagation network(BP), denoising stacked auto-encoder(DSAE), bayesian gaussian Candecomp/Parafac(BGCP) and other models involved in the comparison analy

Key words: intelligent transportation, data repair, graph auto-encoder, generative adversarial network, potential spatiotemporal features, deep learning

中图分类号: