[1] CHANDLER R E, HERMAN R, MONTROLL E W.
Traffic dynamic: Studies in car following[J]. Operations
Research,1958, 6(2):165-184.
[2] BANDO M, HASEBE K, NAKAYAMA A, et al.
Dynamical model of traffic congestion and numerical
simulation[J]. Physical Review E, 1995, 51(2): 1035-
1042.
[3] HELBING D, TILCH B. Generalized force model of
traffic dynamics[J]. Physical Review E, 1998, 58(1):
133-138.
[4] JIANG R, WU Q, ZHU Z. Full velocity difference model
for a car-following theory[J]. Physical Review E, 2001, 64
(1): 017101.
[5] 王祺, 李力, 胡坚明, 等. 不同车头间距下交通流的速
度分布[J]. 清华大学学报(自然科学版), 2011, 51(3):
309-312. [WANG Q, LI L, HU J M, et al. Traffic velocity
distributions for different spacings[J]. Journal of
Tsinghua University (Science and Technology), 2011, 51
(3): 309-312.]
[6] 张建波, 朱远祺, 孙建平. 基于扰动传播特征的随机
Newell 跟驰模型[J]. 交通运输系统工程与信息, 2020,
20(6): 136-144. [ZHANG J B, ZHU Y Q, SUN J P.
Stochastic newell car-following model based on
propagation of disturbances[J]. Journal of Transportation
Systems Engineering and Information Technology, 2020,
20(6): 136-144.]
[7] ZHENG F F, JABARIET S E, LIU H X, et al. Traffic
state estimation using stochastic Lagrangian dynamics[J].
Transportation Research Part B: Methodological, 2018, (115): 143-165.
[8] WAGNER P. Analyzing fluctuations in car- following[J].
Transportation Research Part B: Methodological, 2012,
46(10): 1384-1392.
[9] 张继业, 郑伟范. 交通流随机行为的研究进展[J]. 西南
交通大学学报, 2016, 51(3): 534- 545. [ZHANG J Y,
ZHENG W F. Research on stochastic behavior of traffic
flow[J]. Journal of Southwest Jiaotong University, 2016,
51(3): 534-545.]
[10] 朱位秋. 随机振动[M]. 北京: 科学出版社, 1992. [ZHU
W Q. Random vibration[M]. Beijing: Science Press,
1992.]
|