交通运输系统工程与信息 ›› 2022, Vol. 22 ›› Issue (4): 186-193.DOI: 10.16097/j.cnki.1009-6744.2022.04.021

• 系统工程理论与方法 • 上一篇    下一篇

一种基于融合网络的慢行交通速度计算方法

李熙莹* 1,2,3,陈丽娟1,2,   

  1. 1. 中山大学,智能工程学院,智能交通研究中心,广州 510006;2. 广东省智能交通系统重点实验室,广州 510006; 3. 视频图像智能分析与应用技术公安部重点实验室,广州 510006
  • 收稿日期:2022-04-14 修回日期:2022-05-30 接受日期:2022-06-16 出版日期:2022-08-25 发布日期:2022-08-23
  • 作者简介:李熙莹(1972- ),女,陕西西安人,教授,博士。
  • 基金资助:
    国家重点研发计划

A Method for Calculating Speed of Non-motorized Transportation Based on Fusion Network

LI Xi-ying* 1, 2, 3 , CHEN Li-juan1, 2, 3   

  1. 1. Research Center of Intelligent Transport System, School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou 510006, China; 2. Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou 510006, China; 3. Key Laboratory of Video and Image Intelligent Analysis and Application Technology, Ministry of Public Security, Guangzhou 510006, China
  • Received:2022-04-14 Revised:2022-05-30 Accepted:2022-06-16 Online:2022-08-25 Published:2022-08-23
  • Supported by:
    National Key Research and Development Program of China(2018YFB1601100)。

摘要: 慢行交通速度是慢行交通参数不可或缺的一部分,现有的通过目标检测从视频中提取目标速度的方法不能兼具检测准确率与目标框的稳定性,且选取的速度计算基准点(简称基准点)波动大,存在速度不准确、不稳定的问题。为解决此问题,本文提出一种基于 YOLOv5(You Only Look Once Version 5)的融合检测跟踪网络及速度计算方法,获取更准确、稳定的速度。首先,使用目标检测与目标跟踪单元得到目标的检测框与ID信息,并根据检测框获取目标感兴趣区域送入头部检测单元,进一步获取头部检测框;其次,根据场景下的目标特征判断头部检测框所属,并根 据判断结果提供两种基准点计算方法;最后,对二维基准点坐标进行三维映射,并将结果代入速度计算公式获得速度;同时,提出准确度( MA )、稳定度( MS )两个评价指标以量化评价方法。本文在公开数据集PETS09-S2L1与TUD-Stadtmitte上验证融合网络的检测、跟踪效果,在自建双视角协同数据集上验证基准点计算和速度计算方法的效果。实验结果显示,融合网络的目标检测和跟踪准确率(MOTA)比单一网络高25%以上,本文速度计算方法比常用速度计算方法的准确度提高了30%,稳定度提高了6.28%。本文方法可兼具检测准确率与目标框的稳定性,选取的基准点波动更小,获得的速度更准确、稳定。

关键词: 智能交通, 慢行交通, 目标检测, 速度提取

Abstract: Speed is an important parameter for non-motorized transportation. The current method of extracting the speed from video through target detection cannot ensure the accuracy of the detection and the stability of the target bounding box simultaneously, and the selected speed calculation datum point (abbreviated as datum point) fluctuates greatly, and thus the acquired speed is inaccurate and unstable. To solve this problem, this paper proposes a fusion detection tracking network and speed calculation method based on YOLOv5(You Only Look Once), which can obtain a more stable and accurate speed. First, we use the target detection and target tracking unit to obtain the bounding box and ID information of the detection target. We can obtain the interest region of the target according to the bounding box and send it to the head detection unit. We then obtain the matching head bounding box by the head detection unit. Secondly, according to the target features in the scene, we determine whether the head detection bounding box belongs to the current target or not. According to the different results, we provide two datum point calculation methods. Finally, the three-dimensional coordinates are obtained by mapping the two-dimensional datum point coordinates, and theresults are substituted into the speed calculation formula to obtain the speed. In addition, we proposed two evaluation indicators, accuracy ( MA ) and stability ( MS ) to quantify the evaluation methods. The detection and tracking effects of the fusion network are verified on the public datasets PETS09-S2L1 and TUD-Stadtmitte, and the effects of the datum point calculation and speed calculation methods are verified on the self-built dual-view collaborative dataset. The experimental results show that the target detection and tracking accuracy (MOTA) of the fusion network is more than 25% higher than that of using a single network. The speed calculation method of this paper is 30% more accurate and 6.28% more stable than the commonly used speed calculation method. In conclusion, the method in this paper can ensure both the detection accuracy and the stability of the target bounding box, and the fluctuation of the selected datum points is less, and the speed obtained by the method in this paper is more accurate and stable.

Key words: intelligent transportation, non-motorized transportation, target detection, speed extraction

中图分类号: