[1] 蒋来. 浅谈高速公路抛洒物危害与对策[J]. 道路交通管理, 2021(4): 36-37. [JIANG L. Talking about hazard
and countermeasure of highway dispersion[J]. Road
Traffic Management, 2021(4): 36-37.]
[2] ZHOU L, ZHENG C, YAN H, et al. RepDarkNet: A multibranched detector for small-target detection in remote
sensing images[J]. ISPRS International Journal of GeoInformation, 2022, 11(3): 158.
[3] 田会娟, 刘嘉伟, 翟佳豪, 等. 基于多入侵线的视频车速检测方法[J]. 交通运输系统工程与信息, 2022, 22
(1): 49- 56, 84. [TIAN H J, LIU J W, ZHAI J H, et al.
Video-based vehicle speed measurement method using
multiple intrusion lines[J]. Journal of Traffic and
Transportation Engineering, 2022, 22(1): 49-56, 84.]
[4] 王瑞, 李霄峰, 史天运, 等. 基于视频深度学习的铁路周界入侵检测算法研究[J]. 交通运输系统工程与信息, 2020, 20(2): 61-68. [WANG R, LI X F, SHI T Y,
et al. Railway perimeter intrusion detection algorithms
based on video deep learning[J]. Journal of Traffic and
Transportation Engineering, 2020, 20(2): 61-68.]
[5] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Highspeed tracking with kernelized correlation filters[J].
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2014, 37(3): 583-596.
[6] KIANI GALOOGAHI H, FAGG A, LUCEY S. Learning
background-aware correlation filters for visual tracking
[C]//Proceedings of the IEEE International Conference
on Computer Vision. 2017: 1135-1143.
[7] DANELLJAN M, HÄGER G, KHAN F, et al. Accurate
scale estimation for robust visual tracking[C]//British
Machine Vision Conference, Nottingham, September
1-5, 2014, Bmva Press, 2014.
[8] PU S, SONG Y, MA C, et al. Deep attentive tracking via
reciprocative learning[J]. Advances in Neural
Information Processing Systems, 2018, 2018: 1931-1941.
[9] SUN Y, SUN C, WANG D, et al. Roi pooled correlation
filters for visual tracking[C]//Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern
Recognition, 2019: 5783-5791.
[10] YAN B, PENG H, FU J, et al. Learning spatio-temporal
transformer for visual tracking[C]//Proceedings of the
IEEE/CVF International Conference on Computer
Vision, 2021: 10448-10457.
[11] LIN C Y, MUCHTAR K, YEH C H. Robust techniques
for abandoned and removed object detection based on
Markov random field[J]. Journal of Visual
Communication and Image Representation, 2016, 39:
181-195.
[12] DWIVEDI N, SINGH D K, KUSHWAHA D S. An
approach for unattended object detection through contour
formation using background subtraction[J]. Procedia
Computer Science, 2020, 171: 1979-1988.
|