[1] 牛世峰, 李贵强, 张士伟. 卫星定位数据驱动的营运车辆驾驶人驾驶风险评估模型[J]. 中国公路学报, 2020,33(6): 202-211. [NIU S F, LI G Q, ZHANG S W. Driving Risk Assessment Model of Commercial Drivers Based on Satellite-positioning Data[J]. China Journal of Highway and Transport, 2020, 33(6): 202-211.]
[2] 覃文文, 李欢, 李武, 等. 货车驾驶人驾驶行为与行车安全研究进展[J]. 交通运输系统工程与信息, 2022,22(05): 55-74. [QIN W W, LI H, LI W, GU J J, et al. A Review of Truck Driving Behavior and Safety[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 55-74.]
[3] 徐婷, 张香, 张亚坤, 等. 基于AdaBoost算法的货车驾驶人安全倾向性分类[J]. 安全与环境学报, 2019,19(04): 1273-1281. [XU T, ZHANG X, ZHANG Y K, et al. A predictive and forecast model of the risk perception type of the vehicle drivers[J].Journal of Safely and Environment, 2019,19(04): 1273-1281.]
[4] 沈小燕, 韩小强, 唐奕, 等. 动态监控数据驱动的危险货物运输驾驶员风险评估[J]. 安全与环境学报, 2022,22(04): 2017-2023. [SHEN X Y, HAN X Q,TANG Y, et al. Driver risk assessment of dangerous goods transportation based on dynamic monitoring data[J]. Journal of Safely and Environment, 2022,22(04): 2017-2023]
[5] CHEN C, LIU Q, WANG X, et al. semi-Traj2Graph Identifying Fine-Grained Driving Style With GPS Trajectory Data via Multi-Task Learning[J]. IEEE Transactions on Big Data, 2022,8(6): 1550-1565.
[6] MOHAMMADNAZAR A, ARVIN R, KHATTAK A J. Classifying travelers' driving style using basic safety messages generated by connected vehicles: Application of unsupervised machine learning[J]. Transportation Research Part C Emerging Technologies, 2021,122: 102917.
[7] 侯海晶, 金立生, 关志伟, 等. 驾驶风格对驾驶行为的影响[J]. 中国公路学报, 2018,31(04): 18-27. [HOU H J, JIN L S, GUAN Z W, et al. Effects of Driving Style on Driver Behavior[J]. China Journal of Highway and Transport, 2018, 31(4): 18-27.]
[8] WANG W, Xi J, ZHAO D. Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(8): 2986-2998.
[9] MIOTTI M, NEEDELL Z A, RAMAKRISHNAN S, et al. Quantifying the impact of driving style changes on light-duty vehicle fuel consumption[J]. Transportation Research Part D: Transport and Environment, 2021,98: 102918.
[10] 覃文文, 鄢祺阳, 谷金晶, 等. 重载货车驾驶人驾驶风格识别与量化研究[J]. 交通运输系统工程与信息, 2022,22(04): 137-148. [QIN W W, YAN Q Y, GU J J, et al. Driving Style Recognition and Quantification for Heavy-duty Truck Drivers[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 137-148.]
[11] YU Z, QU W, GE Y. Trait anger causes risky driving behavior by influencing executive function and hazard cognition[J]. Accident Analysis & Prevention, 2022,177: 106824.
[12] HARNISHFEGER K K, BJORKLUND D F. A developmental perspective on individual differences in inhibition[J]. Learning and Individual Differences, 1994,6(3): 331-355.
[13] HATFIELD J. An examination of the relationship between measures of impulsivity and risky simulated driving amongst young drivers[J]. Accident Analysis and Prevention, 2017(103): 37-43.
[14] ELLEN M. M. JONGEN K B. Inhibitory control and reward predict risky driving in young novice drivers–a simulator study[J]. Procedia Social and Behavioral Sciences, 2011,6(20): 604-612.
[15] GANDER P H, MARSHALL N S, JAMES I, et al. Investigating driver fatigue in truck crashes: Trial of a systematic methodology[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2006,9(1): 65-76.
[16] 刘通, 付锐, 张名芳, 等. 融合K-means与高斯混合模型的驾驶风格聚类研究[J]. 中国安全科学学报, 2019,29(12): 40-45. [LIU T, FU R, ZHANG M F, et al. Study on driving style clustering based on K-means and Gaussian mixture model[J]. China Safely Science Journal, 2019,29(12): 40-45.]
[17] YAO Y, ZHAO X, WU Y, et al. Clustering driver behavior using dynamic time warping and hidden Markov model[J]. Journal of Intelligent Transportation Systems, 2021,25(3): 249-262.
[18] ZHAO X, LI Q, XIE D, et al. Risk perception and the warning strategy based on microscopic driving state[J]. Accident Analysis & Prevention, 2018,118: 154-165.
[19] 王涛. 基于改进TOPSIS的驾驶行为实时安全性评估方法研究[D].江苏:江苏大学,2021.[WANG T. Research on Real-time Safety Evaluation Method of Driving Behavior Based on Improved TOPSIS[D]. Jiangsu: Jiangsu University, 2021.]
[20] BAKIOGLU G, ATAHAN A O. AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles[J]. Applied Soft Computing, 2021,99: 106948.
[21] 何雯, 李德毅, 安利峰, 等. 基于GPS轨迹的规律路径挖掘算法[J]. 吉林大学学报(工学版), 2014,44(06): 1764-1770. [HE W, LI D Y, AN L, et al. Regular route mining algorithm based on GPS trajectories[J]. Journal of Jilin University (Engineering and Technology Edition), 2014,44(06): 1764-1770.]
[22] BOHTE W, MAAT K. Deriving and Validating Trip Destinations and Modes for Multiday GPS-Based Travel Surveys: Application in the Netherlands[J]. Demographic Research, 2008,31(31): 813-860.
[23] ARVIN R, KHATTAK A J, QI H. Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods[J]. Accident Analysis & Prevention, 2021,151: 105949.
[24] SHANMUGARATNAM S, KASS S J, ARRUDA J E. Age differences in cognitive and psychomotor abilities and simulated driving[J]. Accident Analysis & Prevention, 2010,42(3): 802-808.
|