交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (2): 24-33.DOI: 10.16097/j.cnki.1009-6744.2024.02.003

• 综合交通运输体系论坛 • 上一篇    下一篇

中国省级层面货运结构调整的碳减排贡献

刘昭然1,2,诸立超*3   

  1. 1. 北京交通大学,综合交通运输大数据行业重点实验室,北京100044; 2. 国家发展和改革委员会综合运输研究所,北京100038;3.浙江财经大学,管理学院,杭州310018
  • 收稿日期:2023-11-21 修回日期:2024-01-09 接受日期:2024-02-04 出版日期:2024-04-25 发布日期:2024-04-25
  • 作者简介:刘昭然(1989- ),男,吉林榆树人,副研究员,博士生。
  • 基金资助:
    国家社科基金后期资助项目 (22FJYB027);浙江省自 然科学基金 (LQ21E080023)。

Effects of Carbon Emission Reduction from Freight Structure Adjustment at Provincial Level in China

LIU Zhaoran1,2,ZHU Lichao*3   

  1. 1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China; 2. Institute of Comprehensive Transportation of National Development and Reform Commission, Beijing 100038, China; 3. School of Management, Zhejiang University of Finance & Economics, Hangzhou 310018, China
  • Received:2023-11-21 Revised:2024-01-09 Accepted:2024-02-04 Online:2024-04-25 Published:2024-04-25
  • Supported by:
    ThePost-fundingProjectfortheNational Social Fund of China (22FJYB027);NaturalScience Foundation of Zhejiang Province, China (LQ21E080023)。

摘要: 货运业是支撑我国实现“碳达峰”“碳中和”目标任务最艰巨的产业之一,而货运结构调整是实现货运碳减排的关键手段。然而,管理层和学术界对于货运结构调整的碳减排贡献,特别是考虑区域间货运碳排放的空间联系,亟需深入量化研究。为解决上述问题,本文利用“自上而下”法,测算中国30个省市1999—2019年的货运碳排放,构建考虑社会经济变量和货运特征变量的空间计量模型,解析货运结构等因素对货运碳排放的影响。结果表明,我国绝大多数省份货运碳排放年均增速超过10%,但增速趋缓;沿海的山东、广东、上海、辽宁和江苏5个省市的货运碳排放最高,且处于同一地理分区内的省份货运碳排放变化趋势更相似。考虑到铁路和水路货运分担率对货运碳排放的总效应分别为-0.193和2.378,为有效实现货运碳减排,应重点考虑在大部分省份推动“公转铁”,而应避免强行推动“公转水”。

关键词: 交通运输经济, 碳减排贡献, 空间计量模型, 货运结构, 时空分布

Abstract: The freight sector is one of the most challenging sectors in supporting China's goal of achieving "carbon peak and carbon neutrality", and the adjustment of freight structure is a key means to achieve CO2 emission reduction in freight transportation. However, there is an urgent need for in-depth quantitative research from both management and academia to assess the CO2 emission reduction effects of freight structure adjustment, especially considering the spatial connection of freight CO2 emissions between regions. To address these issues, this study employs a "top-down" approach to estimate freight CO2 emissions for 30 provinces in China from 1999 to 2019. It also develops a spatial econometric model that incorporates social-economic variables and freight characteristics to quantify the impact of freight structure and other factors on CO2 emissions from freight transportation. The findings reveal that the average annual growth rate of freight CO2 emissions in most Chinese provinces exceeds 10%, although the growth rate is decelerating. Coastal provinces, such as Shandong, Guangdong, Shanghai, Liaoning, and Jiangsu exhibit the highest emissions, with provinces within the same geographical region displaying similar changes. Given the freight CO2 overall effects of rail and water freight transportation on CO2 emissions from freight transportation are-0.193 and 2.378, respectively, prioritizing the transition from "road-to-rail" should be a focal point in most provinces, while the shift from "road-to-water" should be approached cautiously to effectively achieve CO2 emission reduction in freight transportation.

Key words: transportation economy, carbon reduction contribution, spatial econometric model, freight structure, temporal and spatial distribution

中图分类号: