[1] 许丽佳,陈阳舟,崔平远.GPS/INS组合导航系统中的信息融合算法研究[J]。计算机仿真,2004,21(5):20-23[XU L J, CHEN Y Z, CUI P Y. Study on information fusion technology in GPS/INS integrated navigation system [J]. Computer Simulation, 2004,21(5):20-23] [2] 岳晓奎。基于鲁棒滤波的低成本惯性组合导航系统研究[D].西安:西北工业大学,2002:10-14,37-42.[YUE X K. Research on low-cost inertial integrated navigation system based on robust filter[D]. PhD Thesis, Northwestern Polytechnical University, 2002, :10-14,37-42.] [3] 杨波,高社生,张震龙.IMU/GPS车辆导航系统故障检测与隔离新方法[J]。系统工程,2005,23(2):112-116. [YANG B, GAO S S, ZHANG Z L. New method for fault detection and isolation in IMU/GPS integrated navigation system for vehicle[J]. Systems Engineering, 2005,23(2): 112-116.] [4] 周东华,叶银忠。现代故障诊断与容错控制[M]。北京:清华大学出版社,2000:4-10,46-56 [ZHOU D H, YE Y Z. Modern fault diagnosis and fault-tolerant control[M]. Beijing: Tsinghua University Press, 2000:4-10,46-56] [5] Fu Xiao, Shengwei Wang, Xinhua Xu, Gaoming Ge. An isolation enhanced PCA method with expert-based multivariate decoupling for sensor FDD in air-conditioning systems [J]. Applied Thermal Engineering, 2009, 29(4): 712-720. [6] 黄孝彬,牛征,牛玉广,等。利用主元方法进行传感器故障检测的行为分析[J]。传感器技术学报,2003,4:419-423. [HUANG X B,NIU Z,NIU Y G,et al. Behavior analysis of sensor fault detection using PCA approach[J]. Chinese Journal of Sensors and Actuators, 2003,4:419-423.] [7] 王坤,郭云飞. 基于PCA的无监督异常检测方法研究[J].郑州大学学报(理工版),2004,36(4):39-42. [WANG Kun, GUO Yun-fei. A PCA-based unsupervised anomaly detection[J]. Journal of Zhengzhou University (Natural Science Edition), 2004,36(4):39-42] [8] 陈友明,郝小礼。建筑能源管理与控制系统中传感器故障及其检测与诊断[J]。暖通空调,2004,34(2):83-88. [CHEN Y M, HAO X L. Sensor fault detection and diagnosis in building energy management systems[J]. Heating Ventilating & Air Conditioning, 2004,34(2):83-88] [9] Masayuki Tamura, Shinsuke Tsujita. A study on the number of principal components and sensitivity of fault detection using PCA [J]. Computers and Chemical Engineering, Volume 31, Issue 9, September 2007:1035-1046 [10] 王海清,余世明。基于故障诊断性能优化的主元个数选取方法[J]。化工学报,2004,55(2):214-219. [WANG H Q, YU S M. Selection of number of principal conponents based on fault diagnosis performance optimization[J]. Journal of Chemical Industry and Engineering, 2004, 55(2): 214-219] [11] 邱天,丁艳军,吴占松。基于主元分析的故障可检测性的统计指标比较[J]。清华大学学报(自然科学版),2006,46(8):1447-1450 [QIU T, DING Y J, WU Z S. Sensor fault detection statistics based on principal component analysis[J]. Journal of Tsinghua University (Sci & Tech), 2006,46(8):1447-1450] |