[1]Final report of RTCA task force 3-free flight implementation[R]. Washington DC: RTCA Inc, 1995.
[2]周向华. 冲突探测与解脱技术在未来空中交通管理中的应用[D]. 南京: 南京航空航天大学. 2009. [ZHOU X H. Research on technologies of the conflict detection and resolution for future air traffic management[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.]
[3] Alliot J M,Gruber H,Joly G,et,et al. Geneticalgorithms for solving air traffic control conflicts[C]//The Ninth Conference on Artificial Intelligence for Applications, 1993: 338-344.
[4]Krozel J, Mueller T, Hunter G. Free flight conflict detection and resolution analysis[C]//AIAA Guidance, Navigation and Control Conference, San Diego, California USA, July, 1996.
[5]Versteegt H H, Visser H G. Traffic complexity based conflictresolution[J]. Air Traffic Control Quarterly, 2003, 11(2): 103-122.
[6]靳学梅, 自由飞行行空域中多机冲突探测与解脱技术研究[D]. 南京: 南京航空航天大学. 2004. [JIN X M. The research of technologies on the conflict detection and resolution among multi-aircraft in free flight airspace[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004.]
[7]程丽媛. 自由飞行空域中多机冲突探测与解脱技术研究[D]. 南京: 南京航空航天大学. 2005. [CHENG L Y. Research on technologies of the conflict detection and resolution among multi-aircraft in free flight airspace[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005.]
[8]刘星, 胡明华, 韩松臣. 自由飞条件下的冲突探测与解脱方法[J]. 南京理工大学学报, 2002, 26(增刊): 56-60. [LIU X, HU M H, HAN S C. The study on flight conflicts detection and solving[J]. Journal of Nanjing University of Science and Technology, 2002, 26(Supp): 56-60.]
[9]刘星, 韩松臣. 用于自由飞行冲突探测的Delaunay方法[J]. 数据采集与处理, 2002, 17(4): 446-449. [LIU X, HAN S C. Delaunay method for free flight conflict detection[J]. Journal of Data Acquisition & Processing, 2002, 17(4): 446-449.]
[10]刘昕. 基于计算几何方法的飞行冲突检测[J]. 电子测量技术, 2007, 30(4): 87-89. [LIU X. Conflict detection in free flight based on computational geometry method[J]. Electronic Measurement Technology, 2007, 30(4): 87-89.]
[11] T M Cover, P E Hart. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
[12]刘晓红. 基于支持向量机和K近邻的联合分类研究[D]. 哈尔滨: 哈尔滨工程大学. 2011. [LIU X H. Research on the joint classification based on support vector machine and K-nearest neighbor[D]. Harbin: Harbin Engineering University, 2011.]
[13]周而重, 逄玉俊. 一种改进的K近邻法在模式识别中的应用[J]. 沈阳师范大学学报(自然科学版), 2007, 25(4): 475-478. [ZHOU E Z, PANG Y J. Application of an improved K-nearest neighbor approach in pattern recognition[J]. Journal of Shenyang Normal University (Natural Science), 2007, 25(4): 475-478.]
[14]V Vaidehi, S Vasuhi, R Kayalvizhi, et al. Person authentication using face recognition[C]//Proceedings of the World Congress on Engineering and Computer Science, 2008.
[15]徐晓艳. 基于K近邻算法的中文文本分类研究[D]. 合肥: 安徽大学. 2012. [XU X Y. Research of Chinese text classification based on K neighbor algorithm[D]. Hefei: Anhui University, 2012.]
[16]鲁婷. K-近邻中文文本分类方法的研究[D]. 合肥: 合肥工业大学. 2010. [LU T. The research on K-nearest neighbor Chinese text categorization algorithm[D]. Hefei: HeFei University of Technology, 2012.]
[17]于滨, 邬珊华, 王明华,等. K近邻短时交通流预测模型[J]. 交通运输工程学报, 2012, 12(2): 105-111. [YU B, WU S H, WANG M H, et al. K-nearest neighbor model of short-term traffic flow forecast[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 105-111.]
[18]杨小运. 约束Delaunay三角剖分算法的研究与应用[D]. 武汉: 武汉科技大学. 2012. [YANG X Y. The research and application of the delaunay triangulations algorithm[D]. Wuhan: Wuhan University of Science and Technology, 2012.] |