[1] 徐肖豪, 任杰, 李楠. 基于FCM的终端区交通态势识别[J]. 航空计算技术, 2014, 44(1): 1-8. [XU X H, REN J, LI N. Identification of terminal area traffic situation based on FCM[J]. Aeronautical Computing Technique, 2014, 44(1): 1-8.]
[2] JIANG X R, WEN X X, WU M G, et al. A complex network analysis approach for identifying air traffic congestion based on independent component analysis[J]. Physica A, 2019, 523: 364-381.
[3] 李善梅, 徐肖豪, 王超, 等. 基于灰色聚类的交叉航路拥挤识别方法[J]. 西南交通大学学报, 2015, 50(1): 189-197. [LI S M, XU X H, WANG C, et al. Congestion identification of crossing air routes based on gray clustering method[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 189-197.]
[4] 张兆宁, 李蓝天. 基于空中交通流的空中交通网络拥挤程度评估[J]. 科学技术与工程, 2019, 19(1): 268- 272. [ZHANG Z N, LI L T. Crowding degree assessment of air traffic network based on air traffic flow[J]. Science Technology and Engineering, 2019, 19(1): 268-272.]
[5] 李桂毅, 胡明华, 郑哲. 基于FCM-粗糙集的多扇区交通拥挤识别方法研究[J]. 交通运输系统工程与信息, 2017, 17(6): 141-146. [LI G Y, HU M H, ZHENG Z. Multi-sector traffic congestion identification method based on FCM-rough sets[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 141-146.]
[6] D'ANDREA E, MARCELLONI F. Detection of traffic congestion and incidents from GPS trace analysis[J]. Expert Systems with Applications, 2017(73): 43-56.
[7] REMPE F, HUBER G, BOGENBERGER K. Spatiotemporal congestion patterns in urban traffic networks [J]. Transportation Research Procedia, 2016(15): 513- 524.
[8] WANG J, TSAPAKIS I, ZHONG C. A space-time delay neural network model for travel time prediction[J]. Engineering Applications of Artificial Intelligence, 2016 (52): 145-160.
[9] 董春娇, 邵春福, 熊志华. 基于优化SVM的城市快速路网交通流状态判别[J]. 北京交通大学学报, 2011, 35 (6): 13-16. [DONG C J, SHAO C F, XIONG Z H. Identification of traffic states with optimized SVM method on urban expressway network[J]. Journal of Beijing Jiaotong University, 2011, 35(6): 13-16.]
[10] KUMAR K, PARIDA M, KATIYAR V K. Short term traffic flow prediction for a non urban highway using artificial neural network[J]. Procedia- Social and Behavioral Sciences, 2013(104): 755-764.
[11] ASENCIO-CORTÉS G, FLORIDO E, TRONCOSO A, et al. A novel methodology to predict urban traffic congestion with ensemble learning[J]. Soft Computing, 2016, 20(11): 4205-4216.
[12] FAN Z, SONG X, XIA T, et al. Online deep ensemble learning for predicting citywide human mobility[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 1- 21. |