[1] 谷新平, 韩云鹏, 于俊甫.基于决策机理与支持向量机的车辆换道决策模型[J]. 哈尔滨工业大学学报, 2020, 52(7): 111-121. [GU X P, HAN Y P, YU J F. Vehicle lane- changing decision model based on decision mechanism and support vector machine[J]. Journal of Harbin Institute of Technology (Harbin Inst Technol), 2020, 52(7): 111-121.]
[2] 陆建, 李英帅. 车辆换道行为建模的回顾与展望[J]. 交通运输系统工程与信息, 2017, 17(4): 48-55. [LU J, LI Y S. Review and outlook of modeling of lane changing behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 48-55.]
[3] LIU A, PENTLAND A. Towards real-time recognition of driver intentions[C]. IEEE Conference on Intelligent Transportation System, Boston, IEEE, 1997.
[4] PENTLAND A, LIU A. Modeling and prediction of human behavior[J]. Neural Computation, 2014, 11(1): 229-242.
[5] KUGE N, et al. A driver behavior recognition method based on a driver model framework[R]. Warrendale PA: SAE, 2000.
[6] 宗长富, 王畅, 何磊, 等. 基于双层隐式马尔科夫模型的驾驶意图辨识[J]. 汽车工程, 2011, 33(8): 701-706. [ZONG C F, WANG C, HE L, et al. Driving intention recognition based on double-layer HMM[J]. Automotive Engineering, 2011, 33(8): 701-706.]
[7] 王一男. 基于隐马尔科夫模型的驾驶员换道驾驶意图识别方法研究[D]. 长春: 吉林大学, 2020. [WANG Y N. Drivers' lane changing intention recognition method research based on Hidden Markov Model[D]. Changchun: Jilin University, 2020.]
[8] 胡少伟. 基于驾驶意图识别的主动换道系统研究[D]. 北京: 清华大学, 2019. [HU S W. Research on active lane change system based on driving intention recognition [D]. Beijing: Tsinghua University, 2019.]
[9] MANDALIA H M, SALVUCCI D D. Using support vector machines for lane- change detection[C]. Orlando, FL, United States: Proceedings of the Human Factors &Ergonomics Society Annual Meeting, 2005.
[10] KUMAR P, et al. Learning-based approach for online lane change intention prediction[C]. Gold Coast, QLD: IEEE Intelligent Vehicles Symposium, 2013.
[11] LIU L, XU G, SONG Z. Driver lane changing behavior analysis based on parallel Bayesian networks[C]. Yantai, China: the 6th International Conference on Natural Computation, IEEE, 2010.
[12] PENG J, et al. Multi- parameter prediction of drivers' lane-changing behaviour with neural network model[J]. Applied Ergonomics, 2015, 50: 207-217.
[13] WIRTHMUELLER F, et al. Predicting the Time until a vehicle changes the lane using LSTM-based recurrent neural networks[J]. IEEE Robotics and Automation Letters, 2021, DOI 10.1109/LRA.2021.3058930.
[14] GEBERT P, et al. End- to- end prediction of driver intention using 3D convolutional neural networks[C]. Paris, France: Institute of Electrical and Electronics Engineers Inc, IEEE Intelligent Vehicles Symposium, 2019.
[15] GIPPS P G. A model for the structure of lane- changing decisions[J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414.
[16] TOLEDO T, CHOUDHURY C F, BEN- AKIVA M E. Lane- changing model with explicit target lane choice[J]. Transportation Research Record, 2005(1934): 157-165.
[17] 许伦辉, 倪艳明, 罗强, 等. 基于最小安全距离的车辆换道模型研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 1-6. [XU L H, NI Y M, LUO Q, et al. Lanechanging model based on minimum safety distance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 1-6.
[18] MORIDPOUR S, et al. Lane-changing decision model for heavy vehicle drivers[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2012, 16(1): 24-35.
[19] 刘晨强. 车辆轨迹数据与换道行为特性研究[D]. 北京: 北 京 工 业 大 学, 2018. [LIU C Q. Research on vehicle trajectory and the characteristics of lanechanging behavior[D]. Beijing: Beijing University of Technology, 2018.
[20] ZHAO X, et al. The "PNE" driving simulator- based training model founded on the theory of planned behavior [J]. Cognition Technology & Work, 2019, 21(2): 287-300.
[21] 郑淑欣. 基于循环神经网络的车辆换道轨迹评价方法研究[D]. 北京: 北京工业大学, 2020. [ZHENG S X. Research on evaluation method of lane-changing trajectory based on recurrent neural network[D]. Beijing: Beijing University of Technology, 2020.]
[22] 李慧轩. 基于驾驶行为动态获取的换道行为微观建模及仿真校验研究[D]. 北京: 北京交通大学, 2016. [LI H X. Research on microscopic modeling and simulation validation of lane changing behavior based on dynamic acquisition of driving behavior[D]. Beijing: Beijing Jiaotong University, 2016.]
[23] 向馗, 蒋静坪. 时间序列的符号化方法研究[J]. 模式识别与人工智能, 2007, 20(2): 154-161. [XIANG K, JIANG J P. Study on symbolization analysis of time series [J]. Pattern Recognition and Artificial Intelligence, 2007, 20(2): 154-161.] |