[1] 戢晓峰, 卢梦媛, 覃文文. 货车移动遮断影响下的小客车驾驶行为识别[J]. 交通运输系统工程与信息,
2021, 21(5): 174-182. [JI X F, LU M Y, QIN W W, et al.
Passenger cars driving behaviors recognition under truck
movement interruption[J]. Journal of Transportation
Systems Engineering and Information Technology, 2021,
21(5): 174-182.]
[2] 戢晓峰, 吴亚欣, 郝京京, 等. 平纵组合路段事故严重程度致因辨识模型[J]. 交通运输系统工程与信息,
2020, 20(6): 197-204. [JI X F, W Y X, HAO J J, et al.
Severity factors analysis model of traffic accident on
combined horizontal and vertical alignments[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2020, 20(6): 197-204.]
[3] XIE S K, JI X F, YANG W C, et al. Exploring risk factors
with crash severity on China two-lane rural roads using a
random-parameter ordered probit model[J]. Journal of
Advanced Transportation, 2020, 2020: 1-14.
[4] HYUN K, JEONG K, TOK A, et al. Assessing crash risk
considering vehicle interactions with trucks using point
detector data[J]. Accident Analysis & Prevention, 2019,
130: 75-83.
[5] SHAH D, LEE C. Analysis of effects of driver's evasive
action time on rear-end collision risk using a driving
simulator[J]. Journal of Safety Research, 2021, 78: 242-
250.
[6] KHORASHADI A, NIEMEIER D, SHANKARC V, et al.
Differences in rural and urban driver-injury severities in
accidents involving large-trucks: An exploratory analysis
[J]. Accident Analysis & Prevention, 2005, 37(5): 910-
921.
[7] CAMPBELL K, JOKSCH H, GREEN P. A bridging
analysis for estimating the benefits of active safety
technologies[R]. UMTRI-96-18 Final Report, University
of Michigan, Transportation Research Institute, 1996.
[8] SONGCHITRUKSA P, TARKO A P. The extreme value
theory approach to safety estimation[J]. Accident
Analysis & Prevention, 2006, 38(4): 811-822.
[9] ZHENG L, SAYED T, TAGELDIN A. Before-after safety
analysis using extreme value theory: A case of left-turn
bay extension[J]. Accident Analysis & Prevention, 2018,
121: 258-267.
[10] JONASSON J K, ROOTZÉN H. Internal validation of
near-crashes in naturalistic driving studies: A continuous
and multivariate approach[J]. Accident Analysis &
Prevention, 2014, 62(9): 102-109.
[11] ZHENG L, SAYED T. From univariate to bivariate
extreme value models: approaches to integrate traffic
conflict indicators for crash estimation[J]. Transportation
Research Part C: Emerging Technologies, 2019, 103(4):
211-225.
[12] CAVADAS J, AZEVEDO C L, FSRAH H, et al. Road
safety of passing maneuvers: A bivariate extreme value
theory approach under non-stationary conditions[J].
Accident Analysis & Prevention, 2020, 134: 105315.
[13] 朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33. [ZHUN S
Y, JIANG R X, WANG H, et al. Review of research on
traffic conflict techniques[J]. China Journal of Highway
Transportation, 2020, 33(2): 15-33.]
[14] ZHENG L, SAYED T, ESSA M. Validating the bivariate
extreme value modeling approach for road safety
estimation with different traffic conflict indicators[J].
Accident Analysis & Prevention, 2019, 123: 314-323.
[15] ZHENG L, ISMAIL K, MENG X H. Freeway safety
estimation using extreme value theory approaches: A
comparative study[J]. Accident Analysis & Prevention,
2014, 62: 32-41.
[16] 陆建, 张文珺, 杨海飞, 等. 基于碰撞时间的追尾风险分析[J]. 交通信息与安全, 2014, 32(5): 58-64, 76. [LU
J, ZAHNG W J, YANG H F, et al. Analysis of rear-end
risk based on the indicator of time to collison[J]. Traffic
Information and Safety, 2014, 32(5): 58-64, 76.]
|