交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (2): 272-280.DOI: 10.16097/j.cnki.1009-6744.2024.02.027

• 系统工程理论与方法 • 上一篇    下一篇

考虑建成环境的交通事故严重程度致因交互效应研究

王健宇*,陈献天,焦朋朋,覃楚亮,王泽昊   

  1. 北京建筑大学,通用航空技术北京实验室,北京100044
  • 收稿日期:2023-12-21 修回日期:2024-02-02 接受日期:2024-02-06 出版日期:2024-04-25 发布日期:2024-04-25
  • 作者简介:王健宇(1991- ),男,辽宁沈阳人,讲师,博士。
  • 基金资助:
    北京市自然科学基金 (9234025);国家自然科学基金 (52172301);北京市社会科学基金 (21GLA010)。

Interactive Effect on Traffic Accident Severity Considering Built Environment

WANGJianyu*,CHEN Xiantian,JIAO Pengpeng,QIN Chuliang,WANG Zehao   

  1. Beijing Key Laboratory of General Aviation Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2023-12-21 Revised:2024-02-02 Accepted:2024-02-06 Online:2024-04-25 Published:2024-04-25
  • Supported by:
    BeijingNaturalScienceFoundation (9234025);National Natural Science Foundation of China (52172301);Beijing Social Science Foundation (21GLA010)。

摘要: 为探究考虑建成环境影响下各类因素对交通事故的作用机理,本文提出一种融合ADASYN(Adaptive Synthetic Sampling)平衡算法与CatBoost模型的方法,对沈阳市2015—2020年的道路交通事故进行研究,并解析事故致因的交互效应。首先,通过地理信息匹配的方法补充事故地点周围14项建成环境因子,构建多源数据集。其次,通过比较4种经典的机器学习模型,即CatBoost,Random Forest,XGBoost,LightGBM,并筛选出泛化能力最强的模型。随后,利用SHAP (Shapley Additive Explanation)归因方法对最优模型进行解释以揭示单个风险因素效应以及影响重要度排序。最后,基于单因素分析,探究建成环境与事故特征之间的交互效应。研究表明:相同的特征在单因素以及双因素交互分析中对事故影响机制存在差异。在单因素分析中,季节、交通方式这2项因素对致命事故具有显著的正向影响;而主干路密度、快速路密度、工业用地比例、现场形态、道路物理隔离这5项因素对致命事故有着显著的负向影响。在双因素交互分析中,高主路密度与秋冬季节交互以及低工业用地比例与春季交互等对致命事故具有正向影响;而高工业用地比例与行人交互则产生了负向影响。本文成果可为相关人员提供准确的影响交通事故严重程度的相关因素,为优化和建设城市交通系统提供一定的理论支撑。

关键词: 交通工程, 事故严重程度分析, CatBoost模型, 城市道路交通事故, 建成环境, 交互效应

Abstract: To explore the mechanism of various factors influencing traffic accidents under the impact of the built environment, this paper proposes a method that integrates the ADASYN (Adaptive Synthetic Sampling) balancing algorithm with the CatBoost model to study road traffic accidents in Shenyang from 2015 to 2020, and to analyze the interactive effects of accident causation. Firstly, by employing geographic information matching, the study supplemented 14 built environment factors around the accident locations with to construct a multi-source dataset. Secondly, by comparing four classic machine learning models—namely, CatBoost, Random Forest, XGBoost, and LightGBM—the study selected the model with the strongest generalization ability. Subsequently, the SHAP (Shapley Additive Explanation) attribution method was used to interpret the optimal model to reveal the effect of individual risk factors and their importance ranking. Finally, based on single-factor analysis, the study explored the interactive effects between the built environment and accident characteristics. The research indicates that the same features have different impacts on the mechanism of accidents in both single-factor and dual-factor interaction analyses. In single-factor analysis, two factors, season and mode of transportation, have a significant positive impact on fatal accidents; whereas five factors, including trunk road density, expressway density, industrial land proportion, site morphology, and physical road separation, have a significant negative impact on fatal accidents. In dual-factor interaction analysis, high trunk road density interacting with autumn and winter seasons, and low industrial land proportion interacting with spring, have a positive impact on fatal accidents; while a high industrial land proportion interacting with pedestrian traffic has a negative impact. The findings of this study offer precise insights into the factors influencing the severity of traffic accidents, providing a theoretical foundation for optimizing and developing urban transportation systems.

Key words: traffic engineering, accident severity analysis, CatBoost model, urban road traffic accidents, built environment, interaction effect

中图分类号: