交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (3): 290-298.DOI: 10.16097/j.cnki.1009-6744.2024.03.028

• 工程应用与案例分析 • 上一篇    下一篇

接管场景驱动下非驾驶任务对驾驶人视觉与生理特征的影响

张磊1 ,彭金栓*1,陈晓利1, 2   

  1. 1. 重庆交通大学,交通运输学院,重庆 400074;2. 招商局重庆交通科研设计院有限公司,重庆 400067
  • 收稿日期:2024-01-11 修回日期:2024-03-04 接受日期:2024-03-21 出版日期:2024-06-25 发布日期:2024-06-24
  • 作者简介:张磊(1992- ),男,河北邢台人,博士生
  • 基金资助:
    国家重点研发计划(2018YFB1600501);重庆市高校创新研究群体项目(CXQT21022);重庆市自然科学基金(CSTB2022NSCQ-MSX0549)

Impact of Non-driving Tasks on Drivers' Visual and Physiological Characteristics Under Take-over Scenario

ZHANG Lei1 , PENG Jinshuan*1 , CHEN Xiaoli1, 2   

  1. 1. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2. China Merchants Chongqing Communications Technology Research & Design Institute Co Ltd, Chongqing 400067, China
  • Received:2024-01-11 Revised:2024-03-04 Accepted:2024-03-21 Online:2024-06-25 Published:2024-06-24
  • Supported by:
    National Key Research and Development Program of China (2018YFB1600501);University Creative Research Group Project of Chongqing (CXQT21022);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0549)

摘要: 为研究驾驶人在接管车辆控制权过程中视觉与生理特征的变化规律,本文构建面向城市道路与高速公路工况下的6类接管场景,开展模拟驾驶试验,提取视觉特征、心电特征、皮电特征等维度的参数,利用双因素方差分析确定影响驾驶人状态参数的因素。研究结果表明:接管场景类型和非驾驶任务对驾驶人瞳孔面积变化率、注视熵、兴趣区域注视概率、心率增长率、心率变异性、皮电增长率等具有显著影响 (p < 0.05) ;在城市道路工况下,驾驶人瞳孔面积变化率 (M = 26.91,SD = 10.17) 高于高速公路 (M = 21.32, SD = 7.69) ;认知分心状态的注视熵 (M = 3.84, SD = 1.53) 小于基线状态 (M = 4.46, SD = 1.87) 且视觉搜索范围显著减少(p < 0.05) ;与基线和认知分心状态相比,复合分心状态下驾驶人心率增长率提高了34.69%,而心率变异性则降低了10.55%;此外,在复合分心状态下,驾驶人皮电增长率最高,较另外两类非驾驶任务状态高出82.43%。研究结果可为驾驶人接管绩效的评估与提升,自动驾驶人机交互方式的优化等提供重要参考。

关键词: 智能交通, 接管特征, 双因素方差分析, 接管场景, 视觉特征, 生理特征

Abstract: To investigate the changes in drivers' visual and physiological characteristics during the process of take-over vehicle control, this paper analyzes six types of take-over scenarios for urban roads and highways conditions. The driving experiments were conducted and the parameters were extracted from various dimensions, such as visual features, electro cardio graphic features, and electro dermal activity features. The two-way ANOVA was used to identify the factors affecting drivers' state parameters. The results show that the type of take-over scenario and nondriving tasks significantly affect drivers' pupil area changing rate, fixation entropy, fixation probability in areas of interest, heart rate growth, heart rate variability, and electro dermal activity growth (p < 0.05) . In urban road conditions, the drivers' pupil area changing rate (M = 26.91, SD = 10.17) is higher than on highways (M = 21.32, SD = 7.69) . The fixation entropy (M = 3.84, SD = 1.53) during cognitive distraction state is lower than in baseline state (M = 4.46 , SD = 1.87) , and there is a significant reduction in visual search range (p < 0.05) . Compared to baseline and cognitive distraction states, drivers' heart rate growth increased by 34.69% in composite distraction state, while heart rate variability is reduced by 10.55%. Additionally, in composite distraction state, drivers exhibit the highest electro dermal activity growth, surpassing the other two non-driving task by 82.43%. The research results provide important references for the evaluation and improvement of driver take-over performance and the optimization of humancomputer interaction mode of automated driving.

Key words: intelligent transportation, takeover characteristic, two-way ANOVA, takeover scenario, visual feature; physiological feature

中图分类号: