[1] SHEES A, ANSARI M S, VARSHNEY A, et al. FireNet-v2: Improved lightweight fire detection model for real-time IoT applications[J]. Procedia Computer Science,
2023, 218: 2233-2242.
[2] 孙健. 基于视频内容分析的火灾烟雾检测算法研究与实现[D]. 北京: 北京交通大学, 2017. [SUN J. Research
and implementation of fire smoke detection algorithm
based on video content analysis[D]. Beijing: Beijing
Jiaotong University, 2017.]
[3] MUHAMMAD K, KHAN S, PALADE V, et al. Edge
intelligence-assisted smoke detection in foggy
surveillance environments[J]. IEEE Transactions on
Industrial Informatics, 2019, 16(2): 1067-1075.
[4] GONZALEZ A, ZUNIGA M D, NIKULIN C, et al.
Accurate fire detection through fully convolutional
network[C]. Santiago: 7th Latin American Conference on
Networked and Electronic Media (LACNEM 2017), 2017.
[5] WU X, LU X, LEUNG H. An adaptive threshold deep
learning method for fire and smoke detection[C]. Banff:
IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2017.
[6] ZHAO H Y, JIN J, LIU Y, et al. FSDF: A high-performance fire detection framework[J]. Expert Systems
with Applications, 2023, 238(A): 121665.
[7] YAR H, KHAN Z A, ULLAH F U M, et al. A modified
YOLOv5 architecture for efficient fire detection in smart
cities[J]. Expert Systems with Applications, 2023, 231
(2023): 120465.
[8] LI Y M, ZHANG W, LIU Y Y, et al. An efficient fire and
smoke detection algorithm based on an end-to-end
structured network[J]. Engineering Applications of
Artificial Intelligence, 2022, 116(2022): 105492.
[9] MAJID S, ALENEZI F, MASOOD S, et al. Attention
based CNN model for fire detection and localization in
real-world images[J]. Expert Systems with Applications,
2022, 189(2022): 116114.
[10] 马庆禄, 唐小垚. 嵌入 Dense Net 的 YOLOv4 多尺度隧道火灾检测算法[J]. 计算机仿真, 2023, 40(4): 120-
127, 144. [MA Q L, TANG X Y. Yolov4 multi-scale
tunnel fire detection algorithm embedded in Dense Net
[J]. Computer Simulation, 2023, 40(4): 120-127, 144.]
[11] 赵锋. 交通场景中基于视频的火灾烟雾事件检测技术研究[D]. 西安: 长安大学, 2022. [ZHAO F. Research on
video-based fire and smoke event detection technology in
traffic scenes [D]. Xi'an: Chang'an University, 2022.]
|