[1]沈钧贤.人类脑计划与神经信息学[J].生物物理学报,
2001, 17(4): 608-612. [SHEN J X. Human brain project
and neural information[J]. Acta Biophysica Sinica, 2001,
17(4): 607-612.]
[2]关伟,杨柳,江世雄,等.脑电在交通驾驶行为中的应用研究综述[J]. 交通运输系统工程与信息,2016,
16(3): 35-44. [GUAN W, YANG L, JIANG S X, et al.
Review on the application of EEG in traffic driving
behavior study[J]. Journal of Transportation Systems
Engineering and Information Technology, 2016, 16(3):
35-44.]
[3]陈骥驰,王宏,王翘秀,等.基于脑电信号的疲劳驾驶
状态研究[J]. 汽车工程, 2018, 40(5): 515-520. [CHEN
J C, WANG H, WANG Q X, et al. A study on drowsy
driving state based on EEG signals[J]. Automotive
Engineering, 2018, 40(5): 515-520.]
[4]POPESCU F, FAZLI S B, YAKOB B, et al. Single trial
classification of motor imagination using 6 dry EEG
electrodes[J]. PLoS ONE, 2007, 2: 1-5.
[5] ARVANEH M, GUAN C T, ANG K K, et al. Optimizing
the channel selection and classification accuracy in eeg
based BCI[J]. IEEE Transactions on Biomedical
Engineering, 2022, 58: 1865-1873.
[6]
JINDAL K, UPADHYAY R, SINGH H. A novel EEG
channel selection and classification methodology for
multi-class motor imagery-based BCI system design[J].
International
Journal
of
Imaging Systems and
Technology, 2022, 32: 1318-1337.
[7]郑赟,马玉良,孙明旭,等.一种疲劳驾驶检测中的脑电信号通道选择方法[J].中国生物医学工程学报,
2022, 41(4): 402-411. [ZHENG Y, MA Y L, SUN M X,
et al. Method for selecting EEG signal channels in
fatigue
driving detection[J]. Chinese Journal of
Biomedical Engineering, 2022, 41(4): 402-411.]
[8]许伦辉,罗强,吴建伟,等.基于最小安全距离的车辆跟驰模型研究[J]. 公路交通科技, 2010, 27(10): 95
100, 106. [XU L H, LUO Q, WU J W, et al. Research on
vehicle following model based on minimum safe distance
[J]. Highway Transportation Technology, 2010,27(10):
95-100, 106.]
[9]
HU J, SHEN L, ALBANIE S, et al. Squeeze-and
excitation networks[J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020, 42(8): 2011-
2023.
[10] LAWHERN V J, SOLON A J, WAYTOWICH N, et al.
EEGNet: A compact convolutional neural network for
EEG-based brain-computer interfaces[J]. Journal of
Neural Engineering, 2018, 15(5): 056013.1-056013.17.
[11] 杨巨成, 魏峰,林亮,等.驾驶员疲劳驾驶检测研究综述[J]. 山东大学学报(工学版), 2024, 54(2): 1-12.
[YANG J C, WEI F, LIN L, et al. A review of research on
driver fatigue driving detection[J]. Journal of Shandong
University (Engineering Edition), 2024, 54(2): 1-12.]
[12] FARHANGI, F. Investigating the role of data
preprocessing, hyperparameters tuning, and type of
machine learning algorithm in the improvement of
drowsy EEG signal modeling[J]. Intelligent Systems with
Applications, 2022, 15: 200100.
[13] 李力.基于CNNs和LSTM的驾驶员疲劳和分心状态识别研究[D]. 长沙:南大学, 2018. [LI L. Research on
driver fatigue and distraction state recognition based on
CNNs and LSTM[D]. Changsha: Hunan University, 2018.]
[14] 张冰涛,常文文,李秀兰.基于时空脑电特征与并行神经网络的疲劳驾驶检测[J].交通运输系统工程与信息,
2023, 23(2): 315-325. [ZHANG B T, CHANG W W, LI
X L. Fatigue driving detection based on spatial-temporal
electroencephalogram features and parallel neural
networks[J].
Journal
of
Transportation
Systems
Engineering and Information Technology, 2023, 23(2):
315-325.]
[15] YANG L, MA R, ZHANG H M, et al. Driving behavior
recognition using EEG data from a simulated car
following experiment[J]. Accident Analysis & Prevention.
2018, 116: 30-40.
[16] YAN F, LIU M, DING C, et al. Driving style recognition
based on electroencephalography data from a simulated
driving experiment[J]. Frontiers in Psychology, 2019, 10:
439121.
[17] 毛科俊, 刘小明,赵晓华,等.基于脑电信号的驾驶疲劳预报关键参数选取[J].北京工业大学学报,2010,36
(7): 966-970. [MAO K J, LIU X M, ZHAO X H, et al.
The choice of driver fatigue prediction key parameters
based on EEG recordings[J]. Journal of Beijing
University of Technology, 2010, 36(7): 966-970.]
[18] HOUSHMAND S, KAZEMI R, SALMANZADEH H. A
novel convolutional neural network method for subject
independent driver drowsiness detection based on single
channel data and EEG alpha spindles[J]. Proceedings of
the Institution of Mechanical Engineers,Part H:Journal
of Engineering in Medicine, 2021, 235(9): 1069-1078.
[19] ZHAO S, GUAN W, QI G, et al. Heterogeneous
overtaking and learning styles with varied EEG patterns
in a reinforced driving task[J]. Accident Analysis and
Prevention, 2022, 171: 106665-106665.
|