[1]Stathopoulos A, Karlaftis M G . A multivariate state space approach for urban traffic flow modeling and prediction[J]. Transportation Research PartC (S0968-090X), 2003 (11):121-135. [2]ZHU Z, YANG Z S. A real-time isoparametric traffic volume prediction model based on the Kalman filtering theory[C]//Vehicle Electronics Conference,1999.(IVEC’99) Proceedings of the IEEE International,1999:102–105. [3]姚智胜,邵春福.基于状态空间模型的道路交通状态多点时间序列预测[J]. 中国公路学报,2007,20(4):113-117.[YAO Z S, SHAO C F. Road traffic state multi-spot time series forecasting based on state space model[J]. China Journal of Highway and Transport, 2007, 20(4):113-117.] [4]董超俊,刘智勇.多层混沌神经网络及其在交通量预测中的应用[J].系统仿真学报,2007,19(19):4450-4453. [DONG C J, LIU Z Y. Multi-layer neural network involving chaos neurons and its application to traffic-flow prediction[J]. Journal of System Simulation, 2007, 19(19):4450-4453.] [5]YIN H B, WONG S C , XU J M, et al. Urban traffic flow prediction using a fuzzy-neural approach[J].Transportation Research Part C(S0968-090X),2002 (10):85-98. [6]Vlahogianni E I, Karlaftis M G, Golias J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach[J]. Transportation Research Part C (S0968-090X),2005 (13):211-234. [7]XUE J N, SHI Z K, Short-time traffic flow prediction based on chaos time series theory[J]. Journal of Transportation Systems Engineering and Information Technology (S1672-4747), 2008, 8(5):68-72. [8]孙燕,陈森发,周振国.灰色系统理论在无检测器交叉口交通流量预测中的应用[J].东南大学学报(自然科学版),2002,32(2):256-258.[SUN Y, CHEN S F, ZHOU Z G. Application of gray models to traffic flow prediction at non-detector intersections[J], Journal of Southeast University (Natural Science Edition), 2002, 32(2):256-258.] [9]庞明宝,贺国光.基于支持向量机的交通流混沌快速识别研究[J].系统工程学报,2007,22(6):593-598.[PANG M B, HE G G. Research on rapid recognition of chaos in traffic flow based on support vector machine[J]. Journal of Systems Engineering, 2007, 22(6):593-598.] [10]HONG W C, PAI P F, YANG S L. Highway traffic forecasting by support vector regression model with tabu search algorithms[C]//International Joint Conference on Neural Networks, Canada,2006:1617-1621. [11]郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究[J].中国公路学报,2005,18(1):85-89. [ZHENG W Z, SHI Q X. Study of short-term freeway traffic flow prediction based on BAYESIAN combined model[J]. China Journal of Highway and Transport, 2005, 18(1):85-89.] [12]Chen H B, Susan G M. Use of sequential learning for short term traffic flow forecasting[J]. Transportation Research Part C (S0968-090X), 2001(9):319-336. [13]Guan W, H S Y. Statistical features and phase identification of traffic flow on urban freeway[J]. Journal of Transportation Systems Engineering and Information Technology (S1672-4747), 2007, 7(5):42-50. [14]Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discoversy, 1998(2):121-167. |