[1] 吴麟麟, 张明岩, 汪洋. 基于面板数据的宁杭城际出行方式选择行为研究[J]. 交通运输系统工程与信息, 2015, 15(1): 226-231. [WU L L, ZHANG M Y, WANG Y. Analysis of Ninghang intercity travel mode choice behavior based on panel data[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 226-231.]
[2] 吴康, 方创琳, 赵渺希, 等. 京津城际高速铁路影响下的跨城流动空间特征[J]. 地理学报, 2013, 68(2): 159- 174. [WU K, FANG C L, ZHAO M X, et al. The intercity space of flow influenced by high-speed rail: A case study for the rail transit passenger behavior between Beijing and Tianjin[J]. Acta Geographica Sinica, 2013, 68(2): 159-174.]
[3] ALLAHVIRANLOO M, AISSAOUI L. A comparison of time- use behavior in metropolitan areas using pattern recognition techniques[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 271-287.
[4] GONG L, MORIKAWA T, YAMAMOTO T, et al. Deriving personal trip data from GPS data: A literature review on the existing methodologies[J]. Procedia-Social and Behavioral Sciences, 2014, 138: 557-565.
[5] ALLAHVIRANLOO M, RECKER W. Mining activity pattern trajectories and allocating activities in the network[J]. Transportation, 2015, 42(4): 561-579.
[6] KUSAKABE T, ASAKURA Y. Behavioural data mining of transit smart card data: A data fusion approach[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 179-191.
[7] ERMAGUN A, FAN Y L, WOLFSON J, et al. Real-time trip purpose prediction using online location- based search and discovery services[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 96- 112.
[8] ALLAHVIRANLOO M, RECKER W. Daily activity pattern recognition by using support vector machines with multiple classes[J]. Transportation Research Part B: Methodological, 2013, 58: 16-43.
[9] HAN G, SOHN K. Activity imputation for trip- chains elicited from smart-card data using a continuous hidden Markov model[J]. Transportation Research Part B: Methodological, 2016, 83: 121-135.
[10] WANG P F, LIU G N, FU Y J, et al. Spotting trip purposes from taxi trajectories[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(3): 1-26.
[11] JANZEN M, VANHOOF M, AXHAUSEN K W, et al. Estimating long- distance travel demand with mobile phone billing data[C]. Ascona, Switzerland: Swiss Transport Research Conference (STRC), 2016.
[12] LU Y J, ZHU S J, ZHANG L. Imputing trip purposes for long- distance travel[J]. Transportation, 2015, 42(4): 581-595.
[13] LIN Y F, WAN H Y, JIANG R, et al. Inferring the travel purposes of passenger groups for better understanding of passengers[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 235-243. |