[1] THADURI A, GALAR D, KUMAR U. Railway assets: A potential domain for big data analytics[J]. Procedia Computer Science, 2015, 53(7): 457-467.
[2] 王同军. 中国铁路大数据应用顶层设计研究与实践 [J]. 中国铁路, 2017, 1(1): 8-16. [WANG T J. On toplevel design for china railway's big data application & case study[J]. Chinese Railways, 2017, 1(1): 8-16.]
[3] 王洋, 丁志刚, 郑树泉, 等. 一种用户画像系统的设计与实现[J]. 计算机应用与软件, 2018, 35(3): 8- 14. [WANG Y, DING Z G, ZHENG S Q, et al. Design and implementation of user profile system[J]. Computer Applications and Software, 2018, 35(3): 8-14.]
[4] MELONCON L. Embodied personas for a mobile world [J]. Technical Communication, 2017, 64(1): 50-65.
[5] 费鹏, 林鸿飞, 杨亮, 等. 一种用于构建用户画像的多视角融合框架[J]. 计算机科学, 2018, 45(1): 179-182, 204. [FEI P, LIN H F, YANG L, et al. Multi- view ensemble framework for constructing user profile[J]. Computer Science, 2018, 45(1): 179-182, 204.]
[6] 李娜, 范正洁, 郝传洲, 等. 采用语义分析的标签体系构建方法[J]. 西安交通大学学报, 2019, 53(1): 169- 174. [LI N, FAN Z J, HAO C Z, et al. A method for building tag systems based on semantic feature analysis [J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 169-174.]
[7] 王仁武, 张文慧. 学术用户画像的行为与兴趣标签构建与应用[J]. 现代情报, 2019, 39(9): 54-63. [WANG R W, ZHANG W H. Behavior and interest labeling construction and application of academic user portraits [J]. Modern Information, 2019, 39(9): 54-63.]
[8] 周胡勇. 一种融媒体用户画像标签体系设计[J]. 数字化用户, 2019, 25(12): 212-214. [ZHOU H Y. A design of user portrait tag system for fusion media[J]. Digitization User, 2019, 25(12): 212-214.]
[9] 赵永柱, 马霁讴, 张可心. 基于电力资产全寿命周期的标签画像技术研究[J]. 电网与清洁能源, 2018, 34(1): 51-58. [ZHAO Y Z, MA J O, ZHANG K X. Research on the label portrait technology based on life cycle of electricity assets[J]. Advances of Power System & Hydroelectric Engineering, 2018, 34(1): 51-58.]
[10] 杨俊闯, 赵超. K-means 聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23): 7-14. [YANG J C, ZHAO C. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23): 7-14.
[11] 成卫青, 卢艳红. 一种基于最大最小距离和 SSE 的自适应聚类算法[J].南京邮电大学学报(自然科学版), 2015, 35(2): 102-107. [CHENG W Q, LU Y H. Adaptive clustering algorithm based on maximum and minimum distances, and SSE[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2015, 35(2): 102-107.] |