[1] 张沛, 王超深. 大都市区空间范围的界定标准: 基于通
勤 率 指 标 的 讨 论 [J]. 城 市 问 题, 2019(2): 37- 43.
[ZHANG P, WANG C S. Criteria for defining the spatial
scope of metropolitan areas: A discussion based on
commuting rate index[J]. Urban Problems, 2019(2): 37-
43.]
[2] 周一星, 史育龙. 建立中国城市的实体地域概念[J]. 地
理 学 报, 1995(4): 289- 301. [ZHOU Y X, SHI Y L.
Toward establishing the concept of physical urban area
in China[J]. Acta Geographica Sinica, 1995(4): 289-301.]
[3] 宁越敏. 中国都市区和大城市群的界定: 兼论大城市
群在区域经济发展中的作用[J]. 地理科学, 2011, 31
(3): 257- 263. [NING Y M. Definition of Chinese
Metropolitan areas and large urban agglomerations: Role
of large urban agglomerations in regional development
[J]. Scientia Geographica Sinica, 2011, 31(3): 257-263.]
[4] ZHOU J P, MURPHY E, LONG Y. Commuting efficiency
in the Beijing metropolitan area: An exploration
combining smartcard and travel survey data[J]. Journal of
Transport Geography, 2014(41): 175-183.
[5] 王德, 顾家焕, 晏龙旭. 上海都市区边界划分: 基于手
机信令数据的探索[J]. 地理学报, 2018, 73(10): 1896-
1909. [WANG D, GU J H, YAN L X. Delimiting the
Shanghai metropolitan area using mobile phone data[J].
Acta Geographica Sinica, 2018, 73(10): 1896-1909.]
[6] DONG Y Q, WANG S F, LI L, et al. An empirical study
on travel patterns of internet based ride-sharing[J].
Transportation Research Part C: Emerging Technologies,
2018(86): 1-22.
[7] 北京交通发展研究院. 2018年北京交通发展年报[R].
北京: 北京交通发展研究院, 2018. [Beijing Transport
Institute. Beijing transport annual report 2018[R].
Beijing: BTI, 2018.]
[8] LONG Y, HAN H Y, LAI S K, et al. Urban growth
boundaries of the Beijing Metropolitan Area: Comparison
of simulation and artwork[J]. Cities, 2013(31): 337-348.
[9] 郑宣传, 魏运, 秦勇, 等. 一种改进K-means模型的城市
轨道交通突发事件分级方法[J]. 交通运输系统工程与
信 息, 2019, 19(3): 134- 140. [ZHENG X C, WEI Y,
QIN Y, et al. Classification method of urban rail transit
emergencies based on improved K- means algorithm[J].
Journal of Transportations Systems Engineering and
Technology, 2019, 19(3): 134-140.]
[10] 黄钢, 瞿伟斌, 许卉莹. 基于改进密度聚类算法的交通
事故地点聚类研究[J]. 交通运输系统工程与信息,
2020, 20(5): 169-176. [HUANG G, QU W B, XU H Y.
Traffic accident location clustering based on improved
DBSCAN algorithm[J]. Journal of Transportations
Systems Engineering and Technology, 2020, 20(5): 169-
176.]
|