[1] AHMED M S. Analysis of freeway traffic time series data
and their application to incident detection[J]. Equine
Veterinary Education, 1979, 6(1): 32-35.
[2] 王祥雪, 许伦辉. 基于深度学习的短时交通流预测研
究[J]. 交通运输系统工程与信息, 2018,18(1): 81-88.
[WANG X X, XU L H. Short-term traffic flow prediction
based on deep learning[J]. Journal of Transportation
Systems Engineering and Information Technology, 2018,
18(1): 81-88.]
[3] 李桃迎, 王婷, 张羽琪. 考虑多特征的高速公路交通流预测模型[J]. 交通运输系统工程与信息, 2021, 21(3):
101- 111. [LI T Y, WANG T, ZHANG Y Q. Highway
traffic flow prediction model with nulti-features[J].
Journal of Transportation Systems Engineering and
Information Technology, 2021, 21(3): 101-111.]
[4] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal
residual networks for citywide crowd flows prediction
[C]//Thirty-First AAAI Conference on Artificial
Intelligence, 2017.
[5] 张伟斌, 张蒲璘, 苏子毅, 等. 基于自注意力机制与图自编码器的路网交通流数据修复模型[J]. 交通运输
系统工程与信息, 2021, 21(4): 90-98. [ZHANG W B,
ZHANG P L, SU Z Y. Missing data repairs for
road network traffic flow with self-attention graph autoencoder networks[J]. Journal of Transportation Systems
Engineering and Information Technology, 2021, 21(4):
90-98.]
[6] 陈喜群, 周凌霄, 曹震. 基于图卷积网络的路网短时交通流预测研究 [J]. 交通运输系统工程与信息,
2020, 20(4): 49- 55. [CHEN X Q, ZHOU L X, CAO Z.
Short-term network-wide traffic prediction based on
graph convolutional network[J]. Journal of Transportation
Systems Engineering and Information Technology, 2020,
20(4): 49-55.]
[7] GUO S,LIN Y,FENG N,et al. Attention based spatialtemporal graph convolutional networks for traffic flow
forecasting[C]//Proceedings of the AAAI Conference on
Artificial Intelligence,2019: 922-92.
[8] 刘小峰, 王邦昕, 柏林. 基于超声导波SC-DTW的金属板微损检测方法研究[J/OL]. 控制与决策: 1-8. [2022-
01-19]. http: // kns. cnki. net/ kcms/ detail/ 21. 1124.
TP.20210802.1111.041.html. [LIU X F, WANG B X, BO
L. Detection of micro-damage in metal plates based on
SC- DTW of guided waves[J/OL]. Control and Decision:
1-8. [2022-01-18]. http: // kns. cnki. net/ kcms/ detail/
21.1124.TP.20210802.1111.041.html.]
|