[1] KOTOWSKA I, MAŃKOWSKA M, PLUCIŃSKI M.
Inland shipping to serve the hinterland: The challenge
for seaport authorities[J]. Sustainability, 2018, 10(10):
103468.
[2] 严新平. 内河新一代航运系统构建的思考[J]. 中国水运, 2021, 5: 6-8. [YAN X P. Thinking on the
construction of a new generation of inland river shipping
system[J]. China Water Transport, 2021, 5: 6-8.]
[3] 中华人民共和国交通运输部.内河航运发展纲要[R].北京: 交通运输部, 2020. [Ministry of Transport of the
People's Republic of China. Outline of inland waterway
navigation development[R]. Beijing: Ministry of
Transport, 2020.]
[4] 何新华. 内河航运系统体系框架设计的关键问题研究[D]. 上海: 同济大学, 2007. [HE X H. Study on key
issues in the framework design of inland river shipping
system[D]. Shanghai: Tongji University, 2007.]
[5] WANG J, LI J Y. Inland waterway transport in the pearl
river basin, China[J]. Lespace Géographique, 2012, 41
(3): 196-209.
[6] STYHRE L, WINNES H. Energy efficient port calls: A
study of Wedish shipping with international outlooks[R].
Sweden: IVL Swedish Environmental Research Institute,
2016.
[7] SANTOS T A, FONSECA M Â, MARTINS P, et al.
Integrating short sea shipping with trans-European
transport networks[J]. Journal of Marine Science and
Engineering, 2022, 10: 10020218.
[8] JOHN O, BURMEISTER H C, BRODJE A, et al.
Assessing the MONALISA 2.0 Concept: Establishment of
the european maritime simulation network[C]. Hamburg:
International Symposium on Information on Ships, 2014.
[9] WU Z, REN C, WU X, et al. Research on digital twin
construction and safety management application of
inland waterway based on 3D video fusion[J]. IEEE
Access, 2021, 99: 1-1.
[10] LI L, LU W, NIU J, et al. AIS data-based decision model
for navigation risk in sea areas[J]. Journal of Navigation,
2018, 71(3): 664-678.
[11] 黄亮, 文元桥, 周春辉, 等. 基于GIS和AIS的水上交通宏观态势评估系统[J]. 中国航海, 2017, 40(1): 53-57.
[HUANG L, WEN Y Q, ZHOU C H, et al. Water traffic
macro situation assessment system based on GIS and AIS
[J]. Navigation of China, 2017, 40(1): 53-57.]
[12] FUJI J, TANAKA K. Traffic capacity[J]. Journal of
Navigation, 1971, 24(4): 543-652.
[13] WANG N, MENG X, XU Q, et al. An intelligent spatial
collision risk based on the quaternion ship domain[J].
Journal of Navigation, 2010, 63: 733-749.
[14] GOERLANDT F, MONTEWKA J, ZHANG W, et al. An
analysis of ship escort and convoy operations in ice
conditions[J]. Safety Eence, 2017, 95: 198-209.
[15] BUKHARI A C, TUSSEYEVA I, LEE B G, et al.
An intelligent real-time multi-vessel collision risk
assessment system from VTS view point based on fuzzy
inference system[J]. Expert Systems with Applications,
2013, 40(4): 1220-1230.
[16] KANG L J, LU Z Y, MENG Q, et al. Maritime simulator
based determination of minimum DCPA and TCPA
in head-on ship-to-ship collision avoidance in confined
waters[J]. Transportmetrica A: Transport Science, 2019,
15(2): 1124-1144.
[17] 文元桥, 吴定勇, 张恒, 等. 水上交通系统安全模态定义与建模[J]. 中国安全科学学报, 2013, 23(6): 32-38.
[WEN Y Q, WU D Y, ZHANG H, et al. Safety modal
definition and modeling of water transportation system[J].
China Safety Science Journal, 2013, 23(6): 32-38.]
[18] BUKHARI A C, TUSSEYEVA I, LEE B G, et al.
An intelligent real-time multi-vessel collision risk
assessment system from VTS view point based on fuzzy
inference system[J]. Expert Systems with Applications,
2013, 40(4): 1220-1230.
[19] YU H C, FANG Z, MURRAY A T, et al. A directionconstrained space-time prism-based approach for
quantifying possible multi- ship collision risks[J]. IEEE
Transactions on Intelligent Transportation Systems,
2019, 99: 1-11.
[20] JIA C F, MA J, HE M R, et al. Motion primitives learning
of ship-ship interaction patterns in encounter situations
[J]. Ocean Engineering, 2022, 247: 110708.
[21] WANG S, ZHANG Y, ZHENG Y. Multi-ship encounter
situation adaptive understanding by individual
navigation intention inference[J]. Ocean Engineering,
2021, 237: 109612.
[22] ZHEN R, SHI Z Q, LIU J L, et al. A novel arena-based
regional collision risk assessment method of multi-ship
encounter situation in complex waters[J]. Ocean
Engineering, 2022, 246: 110531.
[23] SUI Z Y, WEN Y Q, HUANG Y M, et al. Node
importance evaluation in marine traffic situation complex
network for intelligent maritime supervision[J]. Ocean
Engineering, 2022, 247: 110742.
[24] 兰培真, 刘旺盛, 刘晓佳, 等. 低轨卫星自动识别系统在海事监管中的应用[J]. 中国航海, 2012, 35(2): 11-
14. [LAN P Z, LIU W S, LIU X J, et al. Application of
low orbit satellite automatic identification system in
maritime supervision[J]. Navigation of China, 2012, 35(2): 11-14.]
[25] 张绍明, 桂坡坡, 刘伟杰, 等. 基于高分辨率遥感影像的内河航标自动检测方法[J]. 同济大学学报自然科学版, 2014, 1: 136-143. [ZHANG S M, GUI P P, LIU W J,
et al. Automatic detection method of river navigational
markers based on high resolution remote sensing image
[J]. Journal of Tongji University Natural Science Edition,
2014, 1: 136-143.]
[26] GERBEN P, MARCUS K, AFZAL M R, et al. An
unmanned inland cargo vessel: Design, build, and
experiments[J]. Ocean Engineering, 2020, 201: 107056.
[27] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J].
智能系统学报, 2016, 11(6): 807-817. [YAN X P, LIU C
G. Development status and trend of intelligent shipping
system[J]. CAAI Transactions on Intelligent Systems,
2016, 11(6): 807-817.]
[28] ZHANG J, WAN C, HE A, et al. A two-stage black-spot
identification model for inland waterway transportation
[J]. Reliability Engineering and System Safety, 2021, 9:
107677.
[29] XUE J, PAPADIMITRIOU E, RENIERS G, et al. A
comprehensive statistical investigation framework for
characteristics and causes analysis of ship accidents: A
case study in the fluctuating backwater area of three
gorges reservoir region[J]. Ocean Engineering, 2021,
229: 108981.
[30] 王莹, 欧阳文全, 赵建, 等. 船舶防撞预警视频监测技术在淮河入海航道的应用[J]. 中国水运, 2018, 18(2):
51-52. [WANG Y, OUYANG W Q, ZHAO J, et al.
Application of video monitoring technology for ship
collision prevention in Huaihe river channel[J]. China
Water Transport, 2018, 18(2): 51-52.]
[31] CHEN X, WANG S, SHI C, et al. Robust ship tracking
via multi-view learning and sparse representation[J].
Journal of Navigation, 2019, 72(1): 176-192.
[32] YU Q, TEIXEIRA A P, LIU K, et al. Framework and
application of multi-criteria ship collision risk assessment
[J]. Ocean Engineering, 2022, 250: 111006.
[33] CAI M, ZHANG J, ZHANG D, et al. Collision risk
analysis on ferry ships in Jiangsu section of the Yangtze
river based on AIS data[J]. Reliability Engineering &
System Safety, 2021, 215: 107901.
[34] BOTTS C H. A novel metric for detecting anomalous ship
behavior using a variation of the DBSCAN clustering
algorithm[J]. SN Computer Science, 2021, 2(5): 1-16.
[35] HUANG G, LAI S, YE C, et al. Ship trajectory anomaly
detection based on multi-feature fusion[C]. Chicago:
IEEE International Conference on Smart Data Services
(SMDS), 2021.
[36] VRIES G D, SOMEREN M V. Recognizing vessel
movements from historical data[M]. Springer New York,
2013.
[37] KELLY P. A novel technique to identify AIS
transmissions from vessels which attempt to obscure their
position by switching their AIS transponder from normal
transmit power mode to low transmit power mode[J].
Expert Systems with Applications, 2022, 202: 117205.
[38] ABEBE M, NOH Y, KANG Y J, et al. Ship trajectory
planning for collision avoidance using hybrid ARIMALSTM models[J]. Ocean Engineering, 2022, 256: 111527.
[39] WU B, YIP T L, YAN X P, et al. Fuzzy logic based
approach for ship-bridge collision alert system[J]. Ocean
Engineering, 2019, 187: 106152.
[40] GAO M, SHI G Y. Ship collision avoidance
anthropomorphic decision-making for structured learning
based on AIS with Seq-CGAN[J]. Ocean Engineering,
2020, 217: 107922.
[41] 刘铁君, 郭小飞. 基于“北斗+物联网+AIS技术”的水上安全监管系统研发与应用[J]. 中国海事, 2021, 6: 61-
63. [LIU T J, GUO X F. Research and application of
water safety supervision system based on“Beidou +
Internet of Things + AIS technology”[J]. China Maritime
Safety, 2021, 6: 61-63.]
[42] FEI P, CHU X, GENG X, et al. A inland waterway
monitoring virtual-GIS system based on multi
heterogeneous navigation data fusion[C]//2021 3rd
International Academic Exchange Conference on Science
and Technology Innovation (IAECST), Guangzhou,
China: IEEE, 2021, 15: 618-621.
[43] 魏丹. 基于机器学习的交通状态判别与预测方法[D].
长 春: 吉林大学, 2020. [WEI D. Traffic state
discrimination and prediction method based on machine
learning[D]. Changchun: Jilin University, 2020.]
[44] 人民交通. 破除“肠梗阻”建设三峡水运新通道[DB/
OL]. 北京: 人民交通网, (2021-07-27) [2022-07-14].
http: //www. rmjtxw. com/news/shuiyun/160560. html.
[People's Traffic. A new water transport channel for the
Three Gorges will be built by removing intestinal
obstruction[DB/OL]. Beijing: People's Transportation
Network, (2021-07-27) [2022-07-14]. http: //www.
rmjtxw.com/news/shuiyun/160560.html.]
[45] 范中洲. 船舶定线制优选方法的研究[D]. 大连: 大连海事大学, 2013. [FAN Z Z. Research on optimization
method of ship alignment system[D]. Dalian: Dalian
Maritime University, 2013.]
[46] ZHANG X, LI R, CHEN X, et al. Multi-object-based
vessel traffic scheduling optimisation in a compound
waterway of a large harbour[J]. Journal of Navigation,
2018, 72(3): 1-19.
[47] BUKHARI A C, TUSSEYEVA I, LEE B G, et al.
An intelligent real-time multi-vessel collision risk
assessment system from VTS view point based on fuzzy
inference system[J]. Expert Systems with Applications,
2013, 40(4): 1220-1230.
[48] ZHANG X, LIN J, GUO Z, et al. Vessel transportation
scheduling optimization based on channel-berth
coordination[J]. Ocean Engineering, 2016, 112: 145-152.
[49] 郑红星, 朱徐涛, 李振飞. 双向航道集装箱港口船舶调度优化算法[J]. 计算机应用, 2021, 41(10): 3049-3055.
[ZHENG H X, ZHU X T, LI Z F. Optimization algorithm
of vessel scheduling in container port of bidirectional
channel[J]. Computer Application, 2021, 41(10): 3049-
3055.]
[50] LIU B L, LI Z C, WANG Y D, et al. Short-term berth
planning and ship scheduling for a busy seaport with
channel restrictions[J]. Transportation Research Part E:
Logistics and Transportation Review, 2021, 154: 102467.
[51] DENG Y, SHENG D, LIU B. Managing ship lock
congestion in an inland waterway: A bottleneck model
with a service time window[J]. Transport Policy, 2021,
112: 142-161.
[52] 徐晓帆, 王妮炜, 高璎园, 等. 陆海空天一体化信息网络发展研究[J]. 中国工程科学, 2021, 23(2): 39-45.
[XU X F, WANG N W, GAO Y Y, et al. Research on the
development of land based, sea based, air based and
space based integrated information network[J]. Strategic
Study of CAE, 2021, 23(2): 39-45.]
[53] BONNIN P F, ORTIZ A. On the use of robots and vision
technologies for the inspection of vessels: A survey on
recent advances[J]. Ocean Engineering, 2019, 190:
106420.
[54] MOU J M, ZHOU C, DU Y, et al. Evaluate VTS benefits:
A case study of Zhoushan port[J]. International Journal of
e-Navigation and Maritime Economy, 2015, 3: 22-31.
[55] 中华人名共和国交通运输部. 全要素水上“大交管”建设方案发布[DB/OL]. 北京: 中国交通新闻网, (2021-
09-28) [2022-07-14]. http: //big5. mot. gov.cn/gate/big5/
www. mot. gov. cn/jiaotongyaowen/202109/t20210928_
3620220. html. 2021. [Ministry of Transport of the
People's Republic of China. The construction plan of
"large traffic control" on all-factor water was released[DB/
OL]. Beijing: China Transportation News Network,
(2021-09-28) [2022-07-14]. http://big5.mot.gov.cn/gate/
big5/ www. mot. gov. cn/ jiaotongyaowen/ 202109/
t20210928_3620220.html. 2021.]
[56] 魏曦, 杨保岑, 叶劲松, 等. 基于内河电子航道图制作和应用的内河航道要素分类体系研究[J]. 中国水运,
2015, 15(8): 41-43. [WEI X, YANG B C, YE J S, et al.
Study on classification system of inland waterway
elements based on making and application of inland
waterway electronic waterway map[J]. China Water
Transport, 2015, 15(8): 41-43.]
[57] SZLAPCZYNSKI R, SZLAPCZYNSKA J. A ship domainbased model of collision risk for near-miss detection and
collision alert systems[J]. Reliability Engineering &
System Safety, 2021, 214: 107766.
[58] CAO Y, ZHANG W, ZHU Y, et al. Impact of trends in
river discharge and ocean tides on water level dynamics
in the Pearl river delta[J]. Coastal Engineering, 2020,
157: 103634.
[59] LEE K, HUI P M, WANG B H, et al. Effects of
announcing global information in a two-route traffic flow
model[J]. Journal of the Physical Society of Japan, 2003,
70(12): 3507-3510.
[60] 严新平, 李晨, 刘佳仑, 等. 新一代航运系统体系架构与关键技术研究[J]. 交通运输系统工程与信息, 2021,
21(5): 22-29. [YAN X P, LI C, LIU J L, et al. Research
on architecture and key technology of new generation
shipping system[J]. Journal of Transportation Systems
Engineering and Information Technology, 2021, 21(5):
22-29.]
[61] 王飞跃. 平行系统方法与复杂系统的管理和控制[J].
控制与决策, 2004, 5: 485-489. [WANG F Y. Parallel
systems approach and management and control of
complex systems[J]. Control and Decision, 2004, 5: 485-
489.]
[62] TAO F, ZHANG H, QI Q L, et al. Ten questions towards
digital twin: Analysis and thinking[J]. Computer
Integrated Manufacturing Systems, 2020, 26(1): 1-17.
[63] 严新平, 褚端峰, 刘佳仑, 等. 智能交通发展的现状, 挑战与展望[J]. 交通运输研究, 2021, 7(6): 2-10. [YAN X
P, CHU D F, LIU J L, et al. Current situation, challenge
and prospect of intelligent transportation development[J].
Transport Research, 2021, 7(6): 2-10.]
[64] 陈圆圆. 基于平行数据的交通预测和社会交通信息提取方法研究[D]. 北京: 中国科学院大学, 2018. [CHEN
Y Y. Research on traffic prediction and social traffic
information extraction based on parallel data[D]. Beijing:
University of Chinese Academy of Sciences, 2018.]
[65] 刘腾, 于会龙, 田滨, 等. 智能车的智能指挥与控制:基本方法与系统结构[J]. 指挥与控制学报, 2018, 4(1):
22-31. [LIU T, YU H L, TIAN B, et al. Intelligent
command and control for intelligent vehicles: Basic
methods and system architecture[J]. Journal of Command
and Control, 2018, 4(1): 22-31.]
[66] 严新平, 王树武, 马枫. 智能货运船舶研究现状与发展思考[J]. 中国舰船研究, 2021, 16(1): 1-6. [YAN X P,
WANG S W, MA F. Intelligent cargo ship research status
and development thinking[J]. Chinese Journal of Ship
Research, 2021, 16(1): 1-6.]
|