[1] JIANG Z B, GU J J, FAN W, et al. Q-learning approach
to coordinated optimization of passenger inflow control
with train skip-stopping on a urban rail transit line[J].
Computers & Industrial Engineering, 2019, 127: 1131
1142.
[2]姚志刚,卢致远.联合重复性与周期性的公交乘客个体出行规律分类[J].交通运输系统工程与信息,2023,
23(5): 113-119. [YAO Z G, LU Z Y. A segmentation
of bus passenger combining repeatability and periodicity
of individual travel pattern[J]. Journal of Transportation
Systems Engineering and Information Technology, 2023,
23(5): 113-119.]
[3]张娜,陈峰,王剑坡,等.基于时空序列相似性的城轨乘客出行模式识别[J/OL]. 吉林大学学报(工学版),
(2023-02-09)[2024-03-01]. https://doi.org/10.13229/j.
cnki.jdxbgxb20221413. [ZHANG N, CHEN F, WANG J
P, et al. Recognition of travel patterns for urban rail
transit passengers based on spatiotemporal sequence
similarity[J/OL]. Journal of Jilin University (Engineering
and Technology Edition), https://doi.org/10.13229/j.cnki.
jdxbgxb20221413.]
[4]李飞羽.城市轨道交通乘客行为特征分析及出行预测
[D]. 广 州: 华南理工大学, 2020. [LI F Y. Feature
analysis and travel forecast of passenger behavior in
urban rail transit[D]. Guangzhou: South China University
of Technology, 2020.]
[5]XUE G, GONG D Q, ZHANG J H, et al. Passenger travel
patterns and behavior analysis of long-term staying in
subway system by massive smart card data[J]. Energies,
2020, 13(10): 2670.
[6]
韩宝明,陈佳豪,周玮腾,等.城市轨道交通运营中断条件下乘客路径选择模型[J].同济大学学报(自然科学版), 2023, 51(2): 238-246. [HAN B M, CHEN J H,
ZHOU W T, et al. Passenger route choice model under
the condition of urban rail transit operation disruption[J].
Journal of Tongji University (Natural Science), 2023, 51
(2): 238-246.]
[7]柳伍生,潘自翔,魏隽君,等.地铁站点运营中断下周
边乘客的出行行为研究[J]. 铁道科学与工程学报,
2020, 17(11): 2953-2961. [LIU W S, PAN Z X, WEI J
J, et al. Research on the travel behavior of subway
passengers under the influence of operation interruption
[J]. Journal of Railway Science and Engineering, 2020, 17
(11): 2953-2961.]
[8]LI B B, YAO E J, YAMAMOTO T, et al. Passenger travel
behavior analysis under unplanned metro service
disruption: Using stated preference data in Guangzhou,
China[J]. Journal of Transportation Engineering, 2020,
146(2): 04019069.1-04019069.8.
[9]
LU WB, ZHANG Y, LI P K, et al. Estimating urban rail
transit passenger inflow caused by special events
occurrences fusing multi-source data[J].
Neural
Computing & Applications, 2023, 35(22): 16649-16670.
[10] MO B C, KOUTSOPOULOS H N, ZHAO J H. Inferring
passenger responses to urban rail disruptions using smart
card data: A probabilistic framework[J]. Transportation
Research Part E: Logistics and Transportation Review,
2022, 159: 102628.
[11] 周峰, 贺艺博,文旭光.封站条件下的城市轨道交通车站客流变化预测方法研究[J].交通与运输,2023,39
(3): 54-59. [ZHOU F, HE Y B, WEN X G. Forecast of
passenger flow change in urban rail transit station under
station closure[J]. Traffic & Transportation, 2023, 39(3):
54-59.]
[12] ZHAO Z, KOUTSOPOULOS H N, ZHAO J H. Detecting
pattern changes in individual travel behavior: A
Bayesian approach[J]. Transportation Research Part B:
Methodological, 2018, 112: 73-88.
[13] 张聪聪.轨道交通突发中断下的应急公交接驳模型研究[D]. 长春: 吉林大学, 2019. [ZHANG C C. Research
on passenger transportation by bus in case of a sudden
disruption of urban rail transit[D]. Changchun: Jilin
University, 2019.]
|