交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (4): 231-242.DOI: 10.16097/j.cnki.1009-6744.2024.04.022

• 系统工程理论与方法 • 上一篇    下一篇

带时间窗的时间依赖型同时取送货车辆路径问题研究

何美玲1,杨梅1,韩珣*2a,2b,武晓晖1   

  1. 1. 江苏大学,汽车与交通工程学院,江苏镇江212013;2.四川警察学院,a.智能警务四川省重点实验室, b. 道路交通管理系,四川泸州646000
  • 收稿日期:2024-04-14 修回日期:2024-05-06 接受日期:2024-05-13 出版日期:2024-08-25 发布日期:2024-08-22
  • 作者简介:何美玲(1982- ),女,江苏江都人,副教授。
  • 基金资助:
    教育部人文社会科学研究青年基金 (21YJCZH180);智能警务四川省重点实验室开放课题 (ZNJW2023KFMS004);江苏省研究生科研创新计划项目 (KYCX22_3674)。

Time-dependent Vehicle Routing Optimization Considering Simultaneous Pickup-delivery and Time Windows

HEMeiling1,YANG Mei1,HAN Xun*2a,2b,WU Xiaohui1   

  1. 1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; 2a. Intelligent Policing Key Laboratory of Sichuan Province, 2b. Department of Transportation Management, Sichuan Police College, Luzhou 646000, Sichuan, China
  • Received:2024-04-14 Revised:2024-05-06 Accepted:2024-05-13 Online:2024-08-25 Published:2024-08-22
  • Supported by:
    TheHumanityand SocialScienceYouthFoundation of Ministry of Education of China (21YJCZH180);Opening Project of Intelligent Policing Key Laboratory of Sichuan Province (ZNJW2023KFMS004);Jiangsu Province Graduate Research Innovation Program (KYCX22_3674)。

摘要: 针对带时间窗的时间依赖型同时取送货车辆路径问题(TimeDependentVehicleRouting Problem with Simultaneous Pickup-Delivery and Time Windows, TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(AntColony Optimization with Adaptive Large Neighborhood Search, ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。

关键词: 物流工程, 同时取送货车辆路径问题, 蚁群算法, 时间依赖, 时间窗

Abstract: To solve the time-dependent vehicle routing problem with simultaneous pickup-delivery and time windows (TDVRPSPDTW), this paper proposes a mathematical model with the sum of vehicle fixed cost, driver cost, fuel consumption and carbon emission cost as the optimization objective. Based on the traditional ant colony optimization, this paper introduces a hybrid ant colony optimization with adaptive large neighborhood search (ACO-ALNS). It uses heuristic initialization of pheromones, improves state transition rules, and uses local search strategies to improve solution quality. Benchmark problem instances and adapted TDVRPSPDTW instances are utilized for experimentation. The experimental results demonstrate the effectiveness of the proposed ACO-ALNS algorithm in solving the benchmark problem of TDVRPSPDTW. Compared to the simulated annealing and ant colony optimization with local search, the proposed algorithm improves the optimal value of total distribution cost by an average of 7.56% and 2.90%, respectively. In addition, the presented model incorporates multiple factors, resulting in an average reduction of 4.38% and 3.18% in total distribution costs compared to models that only consider carbon emissions or delivery time. This improvement can effectively enhance the economic benefits of logistics enterprises.

Key words: logistics engineering, vehicle routing problem with simultaneous pickup-delivery, ant colony optimization, time-dependent, time windows

中图分类号: