[1] ZHU Y, HAN F, YANG Y, et al. Fire evacuation
integrationmodelling insubwaystationusing the lattice
Boltzmannmethod[J]. Proceedings of the Institution of
CivilEngineers-Transport,2022,177(4):246-257.
[2]郝妍熙,卫书彤,胡华,等.地铁车站步行障碍行人避让行为建模与进出站仿真[J].交通运输系统工程与信息,2024,24(1):210-220. [HAOYX,WEIST,HUH,
et al. An entry and exit model for mobility-impaired
passengers in subway stations[J]. Journal of
Transportation Systems Engineering and Information
Technology,2024,24(1):210-220.]
[3] BURSTEDDEC, KLAUCKK, SCHADSCHNEIDERA,
et al. Simulation of pedestrian dynamics using a two-
dimensional cellularautomaton[J].PhysicaA: Statistical MechanicsanditsApplications,2001,295(3):507-525.
[4] YAMAMOTOH,YANAGISAWAD,FELICIANIC,etal.
Body-rotation behavior of pedestrians for collision
avoidance in passing and cross flow[J]. Transportation
ResearchPartB:Methodological,2019,122:486-510.
[5] CHENF,WANGZ, ZHUY. Agent-based continuous
space particle pedestrianmodel[J]. Proceedings of the
Institution of Civil Engineers-Transport, 2015,168(4):
336-345.
[6] BISAGNON,SALTORIC,ZHANGB, etal.Embedding
group and obstacle information inLSTMnetworks for
human trajectory prediction in crowded scenes[J].
ComputerVisionand ImageUnderstanding, 2021, 203:
103-126.
[7] SCHUETZ E, FLOHR F B. A review of trajectory
prediction methods for the vulnerable road user[J].
Robotics,2024,13(1):1-39.
[8] ALAHIA, GOELK, RAMANATHANV, et al. Social
LSTM:Human trajectory prediction in crowded spaces
[C]//2016 IEEE Conference on Computer Vision and
PatternRecognition(CVPR),LasVegas,NV,USA: IEEE
ComputerSociety,2016.
[9]吴昊灵,袁振洲,李慧轩,等.考虑行人异质性的地铁站楼梯通行能力仿真模型[J].交通运输系统工程与信息,2016,16(3):141-147. [WUHL,YUANZZ,LIHX,
etal.Acapacitysimulationmodelof stairwayinsubway
station considering pedestrian heterogeneity[J]. Journal
of TransportationSystemsEngineering and Information
Technology,2016,16(3):141-147.]
[10] HEK,ZHANGX,RENS, et al.Deepresidual learning
for image recognition[C]//2016 IEEE Conference on
ComputerVisionandPatternRecognition (CVPR), Las
Vegas,NV,USA:IEEEComputerSociety,2016.
[11] FENG X, CEN Z, HU J, et al. Vehicle trajectory
prediction using intention-based conditionalvariational
autoencoder[C]//2019 IEEE Intelligent Transportation
Systems Conference (ITSC), Auckland, New Zealand:
IEEE-ITSC,2019.
[12] MOLNÁR P, HELBING D. Social force model for
pedestriandynamics[J].PhysicalReviewE, 1995,51(5):
4282-4286.
[13] KOTHARI P, KREISSS, ALAHIA.Human trajectory
forecasting in crowds: Adeep learning perspective[J].
IEEE Transactions on Intelligent Transportation
Systems,2020,23:7386-7400.
|