交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (2): 241-252.DOI: 10.16097/j.cnki.1009-6744.2025.02.022

• 系统工程理论与方法 • 上一篇    下一篇

非公交车辆停靠对主辅式站台延误的影响分析

王建军*1,武京1,李景涛1,周英杰2   

  1. 1. 长安大学,运输工程学院,西安710054;2.北京工业大学,城市交通学院,北京100124
  • 收稿日期:2024-11-29 修回日期:2025-02-18 接受日期:2025-02-28 出版日期:2025-04-25 发布日期:2025-04-20
  • 作者简介:王建军(1970—),男,陕西乾县人,教授,博士。
  • 基金资助:
    长安大学中央高校基本科研业务费专项资金 (300102344901);陕西省自然科学基础研究计划(面上项目)(2024JC YBMS-338)。

ImpactAnalysis of Non-bus Vehicle Stopping on Delays at Main-auxiliary Bus Platforms

WANG Jianjun*1,WU Jing1,LI Jingtao1,ZHOU Yingjie2   

  1. 1. School of Transportation Engineering, Chang'an University, Xi'an 710054, China; 2. College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China
  • Received:2024-11-29 Revised:2025-02-18 Accepted:2025-02-28 Online:2025-04-25 Published:2025-04-20
  • Supported by:
    The Fundamental Research Funds for the Central Universities CHD (300102344901);Natural Science Basic Research Program of Shaanxi(2024JC YBMS-338)。

摘要: 为分析受网约车等非公交车辆停靠干扰影响的主辅式公交站点的延误,本文结合公交车的运动特征,在传统延误模型基础上,构建基于影响时间与折减流量的延误模型。首先,结合公交车在公交站点的微观行为,构建直线式和港湾式站台受非公交车辆停靠干扰的延误模型;其次,基于主辅式站台的公交车运动特征与所构建的单站台延误模型,建立受非公交车辆停靠干扰的延模型,并利用VISSIM软件,通过平均绝对百分比误差(MAPE)验证模型的可行性;最后,以河南省焦作市的典型公交站点为例,分析在不同外侧车道流量和受非公交车辆停靠影响的公交车辆比例α条件下主辅式站台的适用类型。研究结果显示,在非公交车辆停靠干扰下,主辅式站台的影响时间模型和折减流量模型与仿真结果的最大误差分别为33%和7%;港湾-港湾并联式和串联式主辅站产生的延误最小,两者影响时间相较港湾式站台最多降低70%,折减流量最多增加30%,适用于外侧车道流量大于400pcu·h-1或α大于0.1的场景。研究表明,本文提出的延误模型适用于计算非公交车辆干扰下的站台延误,且主辅式站台设计可为非公交车辆停靠的公交站点提供设计和优化参考。

关键词: 交通工程, 延误模型, 交通仿真, 主辅式站台, 非公交车辆停靠

Abstract: In order to analyze the delay at main-and-auxiliary bus platforms under the interference of non-bus vehicles, such as ride hailing vehicles, this paper constructs a delay model based on impact time and flow reduction. Building upon traditional delay models, this delay model considers the movement characteristics of buses. First, delay models for both linear and bay platforms are developed, considering the micro-behaviors of buses at stops influenced by non-public vehicle parking. Second, a comprehensive delay model for main-auxiliary platforms, accounting for non-bus vehicle stops, is established using the movement patterns at main-and-auxiliary platforms and the single-platform delay models. The feasibility of the model is verified using VISSIM software, with the mean absolute percentage error (MAPE) as a validation index. Finally, a case study is conducted at a typical bus stop in Jiaozuo City, Henan Province, examining the suitability of different main-auxiliary platform types under varying outer lane traffic flows and percentages of buses affected by non-bus vehicle stops (α) . The results show that under the interference of non bus vehicle stopping, the maximum errors of the impact time and the flow reduction models for main-and-auxiliary platforms are 33% and 7%, respectively. The bay-bay parallel and series main-and-auxiliary platforms cause the least delay, with the impact time reduced by up to 70% and flow reduction increased by up to 30%, which is applicable for scenarios where the outer lane traffic flow exceeds 400 pcu⋅h-1 or α is greater than 0.1. The study demonstrates that the proposed delay model is suitable for calculating platform delays under the interference of non-public vehicles, and the main-and-auxiliary platform design provides a reference for the design and optimization of bus stops with non-bus vehicle stopping.

Key words: traffic engineering, delay model, traffic simulation, main-auxiliary station, non-bus vehicle stopping

中图分类号: