[1]
张毅,姚丹亚,李力,等.智能车路协同系统关键技术与应用[J]. 交通运输系统工程与信息,2021,21(5):40
51. [ZHANG Y, YAO D Y, LI L, et al. Technologies
and applications for intelligent vehicle-infrastructure
cooperation systems[J]. Journal of Transportation Systems
Engineering and Information Technology, 2021, 21(5):
40-51.]
[2]王云鹏,王学平,王翀,等.自动驾驶汽车交通安全白皮书[R]. 北京:中国汽车技术研究中心有限公司,同济大学, 百度Apollo, 2022. [WANG Y P, WANG X P,
WANG C, et al. Autonomous vehicle traffic safety white
paper[R]. Beijing: CATARC, Tongji University, Baidu
Apollo, 2022.]
[3]崔东,王龙亮,周博雅,等.基于保险数据涉及高级驾驶辅助功能的汽车交通事故场景调研分析[J].时代汽车, 2022, 11: 174-176. [CUI D, WANG L L, ZHOU B
Y, et al. Investigation and analysis of automobile traffic
accident scenarios involving advanced driver assistance
functions based on insurance data[J]. Auto Time, 2022,
11: 174-176.]
[4] ABDEL-ATY M, DING S. A matched case-control
analysis of autonomous vs human-driven vehicle
accidents[J]. Nature Communications, 2024, 15(1): 4931.
[5]
JUNIETZ P, WACHENFELD W, KLONECKI K, et al.
Evaluation of different approaches to address safety
validation
of
automated
driving[C]//2018
21st
International Conference on Intelligent Transportation
Systems (ITSC), IEEE, 2018: 491-496.
[6]BIANCHI PICCININI G, LEHTONEN E, FORCOLIN F,
et al. How do drivers respond to silent automation
failures? Driving simulator study and comparison of
computational driver braking models[J]. Human Factors,
2020, 62(7): 1212-1229.
[7]吴斌,朱西产,沈剑平.基于自然驾驶数据的驾驶员紧急制动行为特征[J]. 同济大学学报(自然科学版),
2018, 46(11): 1514-1519, 1535. [WU B, ZHU X C,
SHEN J P. Driver emergency braking behavior based on
naturalistic driving data[J]. Journal of Tongji University
(Natural Science edition), 2018, 46(11): 1514-1519,
1535.]
[8]联合国欧洲经济委员会.UN-R157关于自动车道保持系统的法规[S]. 日内瓦: 联合国欧洲经济委员会,
2021. [United Nations Economic Commission for Europe.
UN-R157 regulation concerning automated lane keeping
systems [S]. Geneva: UNECE, 2021.]
[9]
王雪松,朱美新,陈铭.工况紧急程度对驾驶员避撞行为的影响[J]. 同济大学学报(自然科学版),2016,44(6):
876-883. [WANG X S, ZHU M X, CHEN M. Impacts of
situational urgency on drivers' collision avoidance
behaviors[J]. Journal of Tongji University (Natural
Science Edition), 2016, 44(6): 876-883.]
[10] 吴善根, 李涛,林宣财,等.基于制动减速度的高速公路停车视距研究[J]. 公路交通科技,2021, 38(9): 51
59. [WU S G, LI T, LIN X C, et al. Study on parking sight
distance of expressway based on braking deceleration[J].
Journal of Highway and Transportation Research and
Denelopment, 2021, 38(9): 51-59.]
[11] 袁浩, 史桂芳,黄晓明,等.停车视距制动模型[J].东南大学学报(自然科学版),2009,39(4): 859-862. [YUAN
H, SHI G F, HUANG X M, et al. Braking model of
stopping sight distance[J]. Journal of Southeast University
(Natural Science edition), 2009, 39(4): 859-862.]
[12] GREEN M. Methodological analysis of driver perception
brake times[J]. Transportation Human Factors, 2000, 2
(3): 195-216.
[13] 郭柏苍, 谢宪毅,金立生,等.考虑多维驾驶特性的制动反应时间预测模型[J]. 汽车工程, 2021, 43(11):
1683-1692. [GUO B C, XIE X Y, JIN L S, et al. Braking
response time prediction model based on multi
dimensional driving characteristics[J]. Automotive
Engineering, 2021, 43(11): 1683-1692.]
[14] 李霖, 朱西产,马志雄.驾驶员在真实交通危险工况中的制动反应时间[J]. 汽车工程, 2014, 36(10): 1225
1229. [LI L, ZHU X C, MA Z X. Driver brake reaction
time under real traffic risk scenarios[J]. Automotive
Engineering, 2014, 36(10): 1225-1229.]
[15] 国际标准化组织.ISO34502:2022 道路车辆—基于场
景的安全评估框架[S]. 日内瓦: 国际标准化组织,
2022. [International Organization for Standardization.
ISO 34502: 2022 road vehicles-engineering framework
and process of scenario-based safety evaluation[S].
Geneva: International Organization for Standardization,
2022.]
[16] 王雪松, 孙平,张晓春,等.基于自然驾驶数据的高速
公路跟驰模型参数标定[J].中国公路学报,2020,33
(5): 132-142. [WANG X S, SUN P, ZHANG X C, et al.
Calibrating car-following models on freeway based on
naturalistic driving data[J]. China Journal of Highway
and Transport, 2020, 33(5): 132-142.]
|