[1] 郭延永, 刘佩, 袁泉,等. 网联自动驾驶车辆道路交通安全研究综述[J]. 交通运输工程学报, 2023, 23(5): 19-
38. [GUO Y Y, LIU P, YUAN Q, et al. A review of road
traffic safety research on networked autonomous vehicles
[J]. Journal of Transportation Engineering, 2023, 23(5):
19-38.]
2] 李熙莹, 陈丽娟. 一种基于融合网络的慢行交通速度计算方法[J]. 交通运输系统工程与信息, 2022, 22
(4): 186-193. [LI X Y, CHEN L J. A slow traffic speed
calculation method based on fusion network[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(4): 186-193.]
[3] LI A, SUN S, ZHANG Z, et al. A multi-scale traffic
object detection algorithm for road scenes based on
improved YOLOv5[J]. Electronics, 2023, 12(4): 878.
[4] ZHANG Y, SUN Y, WANG Z, et al. YOLOV7-RAR for
urban vehicle detection[J]. Sensors, 2023, 23(4): 1801.
[5] LIU S, WANG Y, YU Q, et al. CEAM-YOLOV7:
Improved YOLOV7 based on channel expansion and
attention mechanism for driver distraction behavior
detection[J]. IEEE Access, 2022, 10: 129116-129124.
[6] WANG H, JIN L, HE Y, et al. Detector-tracker
integration framework for autonomous vehicles
pedestrian tracking[J]. Remote Sensing, 2023, 15(8):
2088.
[7] 金立生, 华强, 郭柏苍, 等 . 基于优化DeepSort的前方车辆多目标跟踪[J]. 浙江大学学报(工学版), 2021,
55(6): 1056-1064. [JIN L S, HUA Q, GUO B C, et al.
Optimized DeepSort-based multi-objective tracking of
forward vehicles[J]. Journal of Zhejiang University
(Engineering Edition), 2021, 55(6): 1056-1064.]
[8] 梁华刚, 黄伟浩, 薄颖, 等. 基于多特征融合的隧道场景车辆再识别 [J]. 中国公路学报, 2023, 36(8):
280-291. [LIANG H G, HUANG W H, BO Y, et al.
Re-recognition of vehicles in tunnel scenes based on
multi-feature fusion[J]. Chinese Journal of Highway,
2023, 36(8): 280-291.]
[9] NOH S. Decision-making framework for autonomous
driving at road intersections: Safeguarding against
collision, overly conservative behavior, and violation
vehicles[J]. IEEE Transactions on Industrial Electronics,
2018, 66(4): 3275-3286.
[10] SHI X, WONG Y D, CHAI C, et al. An automated
machine learning (AutoML) method of risk prediction
for decision-making of autonomous vehicles[J]. IEEE
Transactions on Intelligent Transportation Systems,
2020, 22(11): 7145-7154.
[11] 戴景霜. 基于风险评估一致性的智能汽车人机共驾横向控制策略研究[D]. 长春: 吉林大学, 2022. [DAI J S.
Research on human-machine co-driving lateral control
strategy for intelligent vehicles based on risk assessment
consistency [D]. Changchun: Jilin University, 2022.]
[12] 秦雅琴, 张红强, 熊坚, 等. 风险驾驶模拟情境下驾驶人风险感知研究[J]. 交通运输系统工程与信息, 2015,
15(2): 142-148. [QIN Y Q, ZHANG H Q, XIONG J,
et al. Research on drivers' risk perception under risky
driving simulation scenario[J]. Journal of Transportation
Systems Engineering and Information Technology, 2015,
15(2): 142-148.]
[13] YANG L, ZHANG R Y, LI L, et al. Simam: A simple,
parameter-free attention module for convolutional neural
networks[C]// International conference on machine
learning, PMLR, 2021: 11863-11874.
[14] ZHANG Y F, REN W, ZHANG Z, et al. Focal and
efficient IOU loss for accurate bounding box regression
[J]. Neurocomputing, 2022, 506: 146-157.
[15] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature
pyramid networks for object detection[C]// Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2017: 2117-2125.
|