交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (2): 304-313.DOI: 10.16097/j.cnki.1009-6744.2025.02.028

• 系统工程理论与方法 • 上一篇    下一篇

运力短缺下的生活物资临时分配点选址-路径优化研究

李国旗*a,b,c,郝志丹a,杨佳鑫a,程佳豪a   

  1. 西南交通大学,a.交通运输与物流学院;b.综合交通运输智能化国家地方联合工程实验室; c. 综合交通大数据应用技术国家工程实验室,成都611756
  • 收稿日期:2024-12-25 修回日期:2025-02-18 接受日期:2025-02-25 出版日期:2025-04-25 发布日期:2025-04-20
  • 作者简介:李国旗(1984—),男,江西南昌人,教授,博士。
  • 基金资助:
    国家自然科学基金 (42271195);四川省自然科学基金 (2024NSFSC0272)。

Living Materials Temporary Distribution Points Location-routing Optimization Under Transportation Capacity Shortage

LI Guoqi*a,b,c, HAO Zhidana, YANG Jiaxina, CHENG Jiahaoa   

  1. a. School of Transportation and Logistics; b. National United Engineering Laboratory of Integrated and Intelligent Transportation; c. National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2024-12-25 Revised:2025-02-18 Accepted:2025-02-25 Online:2025-04-25 Published:2025-04-20
  • Supported by:
    National Natural Science Foundation of China (42271195);Natural Science Foundation of Sichuan Province, China (2024NSFSC0272)。

摘要: 重大突发灾害容易引发运力资源短缺,这对受灾地区的生活物资保障工作构成挑战。据此,本文设计由物资中转站、临时分配点和需求点组成的3级配送网络,以便向受灾地区高效运送生活物资。考虑到生活物资临时分配点的配送能力限制和灾后运力短缺,采用多车程与设施协作配送策略,构建以最小化剥夺成本为目标的混合整数规划模型,设计包含max-min、伪随机转移和多维信息素等策略的改进蚁群优化算法(IACO)对模型进行求解,数值结果证实了所开发方法在计算效率和求解质量方面的有效性。最后,以上海市松江区实际案例作为算例进行计算分析。结果表明:与独立配送相比,采用设施协作配送模式,可将剥夺成本降低40.68%,物资总分配量提升7.42%,剩余需求量方差减少13.18%。

关键词: 物流工程, 选址-路径, 改进的蚁群优化算法, 应急物流, 运力短缺

Abstract: Major emergency disasters can lead to shortages of transportation resources, which poses a challenge to the supply work of living materials in disaster-stricken areas. This paper develops a three-tier delivery network consisting of material transfer stations, temporary distribution points, and demand points to efficiently deliver living materials to disaster-stricken areas. A multi trip and facility-collaborative distribution strategy is designed in consideration of the capacity limitations of the temporary distribution points for living materials and the transportation capacity shortage that arise post-disaster. A mixed-integer programming model is developed with the objective of minimizing deprivation costs. To solve this model, an Improved Ant Colony Optimization (IACO) algorithm is used, incorporating max-min, pseudo-random transfer, and multi-dimensional pheromone strategies. Numerical experiments validate the effectiveness of the proposed method in terms of computational efficiency and solution quality. A case study of Songjiang District in Shanghai is performed to demonstrate the applicability of the model. The results indicate that, compared to the independent distribution, the facility-collaborative distribution approach can reduce deprivation costs by 40.68%, increase the total material distribution by 7.42%, and decrease the variance of residual demand by 13.18%.

Key words: logistics engineering, location-routing, improved ant colony optimization, emergency logistics, transportation capacity shortage

中图分类号: