Journal of Transportation Systems Engineering and Information Technology ›› 2023, Vol. 23 ›› Issue (2): 54-66.DOI: 10.16097/j.cnki.1009-6744.2023.02.006

Previous Articles     Next Articles

Platoon Control Strategy for Connected and Automated Vehicles Under Intermittent Communication Failures

LIU Run-kun1, YU Hai-yang1,2, CHENG Meng-yue1, REN Yi-long*1,2   

  1. 1. School of Transportation Science and Engineering, Beihang University, Beijing 102206, China; 2. Zhongguancun Laboratory, Beijing 100094, China
  • Received:2022-11-11 Revised:2022-12-20 Accepted:2023-02-17 Online:2023-04-25 Published:2023-04-19
  • Supported by:
    Beijing Municipal Science & Technology Commission (Z211100004221008);National Natural Science Foundation of China (U1964206)

间歇性通信失效下网联自动驾驶队列控制策略

刘润坤1,于海洋1,2,程猛越1,任毅龙*1,2   

  1. 1. 北京航空航天大学,交通科学与工程学院,北京 102206;2. 中关村实验室,北京100094
  • 作者简介:刘润坤(1995- ),男,河南周口人,博士生
  • 基金资助:
    北京市科学技术委员会项目(Z211100004221008);国家自然 科学基金(U1964206)

Abstract: There will be intermittent communication failure when the Connected and Automated Vehicles (CAVs) platoons drive in special areas. In order to improve vehicle control stability in the case of intermittent communication failure, this research proposes a new platoon control strategy. First, we design an upper Cooperative Adaptive Cruise Control (CACC) controller structure, named Multi-information Predicted CACC (MIP-CACC), which includes a predictor to predict the state information of the vehicle ahead. Then, a Dynamic Low-Rank Tensor Prediction (D-LRTP) model is constructed that can be applied to this controller. By analyzing the string stability of the controller, the stability is affected by the combination of information weight, number of communication connections, communication delay, cut-off frequency, time headway, and other parameters. There is a minimum time headway that satisfies string stability in different communication and control scenarios. Finally, the control strategy proposed in this study is compared with the traditional control strategy. The simulation results show that the control strategy proposed in this study has less disturbance to the driving state of the platoon under intermittent communication failures. Driving speed and acceleration disturbances can be reduced by 79.43% and 72.53% respectively. This strategy has reference significance for the design of CAVs control scheme with communication robustness.

Key words:

communication failures

摘要: 网联自动驾驶车队在特殊区域驾驶时会存在间歇性通信失效,为提高在间歇性通信失效下车队的稳定性,本文提出一种考虑多前车-预测信息的网联自动驾驶车辆控制策略。首先,设计一种新型的 CACC(Cooperative Adaptive Cruise Control)上层控制器结构,命名为 MIP-CACC(Multi-Information Predicted CACC),该结构包含一个对前车状态信息进行预测的预测器。然后,构建适用于该控制器的D-LRTP(Dynamic Low Rank Tensor Prediction)模型,实现对间歇性通信失 效下缺失的前车状态信息预测。通过对该控制器的串稳定性分析发现,稳定性受到信息权重、通信连接数量、通信延迟、截断频率及车头时距等参数的组合影响。不同的通信及控制场景下,存在满足串稳定性的最小车头时距参数。最后,将本文提出的控制策略与传统控制策略进行对比。仿真结果表明:在间歇性通信失效下,本文提出的控制策略对后车的驾驶状态扰动更小,驾驶速度和加速度扰动分别最大降低79.43%和72.53%。该策略对设计通信鲁棒性的网联自动驾驶车辆控制方案具有参考意义。

关键词: 智能交通, 网联自动驾驶, 车辆纵向控制, 车辆队列, 通信失效

CLC Number: