[1] YANG F, TANG X Y, GAN Y X, et al. Forecast of freight
volume in Xi'an based on gray GM (1, 1) model and
Markov forecasting model[J]. Journal of Mathematics,
2021, 2021(1): 1-6.
[2] 梁宁, 耿立艳, 张占福, 等. 基于GRA与SVM-mixed的货运量预测方法[J]. 交通运输系统工程与信息, 2016,
16(6): 94-99. [LIANG N, GENG L Y, ZHANG Z F, et al.
A prediction method of railway freight volumes using
GRA and SVM-mixed[J]. Journal of Transportation
Systems Engineering and Information Technology, 2016,
16(6): 94-99.]
[3] 耿立艳, 张天伟, 赵鹏. 基于灰色关联分析的LS-SVM铁路货运量预测 [J]. 铁道学报, 2012, 34(3): 1- 6.
[GENG L Y, ZHANG T W, ZHAO P. Forecast of railway
freight volumes based on LS-SVM with Grey correlation
analysis[J]. Journal of the China Railway Society, 2012,
34(3): 1-6.]
[4] 耿立艳, 梁毅刚. 基于灰色自适应粒子群LSSVM的铁路货运量预测[J]. 西南交通大学学报, 2012, 47(1):
144-150. [GENG L Y, LIANG Y G. Prediction of railway
freight volumes based on Grey adaptive particle swarm
least squares support vector machine model[J]. Journal of
Southwest Jiaotong University, 2012, 47(1): 144-150.]
[5] HUANG L J, XIE G J, ZHAO W D, et al. Regional
logistics demand forecasting: A BP neural network
approach[J]. Complex & Intelligent Systems, 2023, 9(3):
2297-2312.
[6] LIU C G, ZHANG J Q, LUO X X, et al. Railway freight
demand forecasting based on multiple factors: Grey
relational analysis and deep autoencoder neural networks
[J]. Sustainability, 2023, 15(12): 9652.
[7] 程肇兰, 张小强, 梁越. 基于LSTM网络的铁路货运量预测[J]. 铁道学报, 2020, 42(11): 15-21. [CHENG Z L,
ZHANG X Q, LIANG Y. Railway freight volume
prediction based on LSTM network[J]. Journal of the
China Railway Society, 2020, 42(11): 15-21.]
[8] 谭雪, 张小强. 基于GRU深度网络的铁路短期货运量预测 [J]. 铁道学报, 2020, 42(12): 28- 35. [TAN X,
ZHANG X Q. GRU deep neural network based shortterm railway freight demand forecasting[J]. Journal of the
China Railway Society, 2020, 42(12): 28-35.]
[9] YU N, XU W, YU K L. Research on regional logistics
demand forecast based on improved support vector
machine: A case study of Qingdao city under the New
Free Trade Zone Strategy[J]. IEEE Access, 2020, 8:
9551-9564.
[10] 张英贵, 杨蕙瑜, 雷定猷. 基于组合输入ES-GA-BP的中欧班列货运量预测[J]. 深圳大学学报(理工版),
2022, 39(2): 168-176. [ZHANG Y G, YANG H Y, LEI DY. Freight volume forecast of China railway express
based on ES-GA-BP with combined input[J]. Journal of
Shenzhen University Science and Engineering, 2022, 39
(2): 168-176.]
[11] ZHOU C, TAO J C. Adaptive combination forecasting
model for China's logistics freight volume based on an
improved PSO-BP neural network[J]. Kybernetes, 2015,
44(4): 646-666.
[12] 贺政纲, 黄娟. 基于FPSO灰色Verhulst模型的铁路货运量预测[J]. 铁道学报, 2018, 40(8): 1- 8. [HE Z G,
HUANG J. Prediction of railway freight volumes based
on FPSO grey Verhulst model[J]. Journal of the China
Railway Society, 2018, 40(8): 1-8.]
[13] XUE J K, SHEN B. A novel swarm intelligence
optimization approach: Sparrow search algorithm[J].Systems Science & Control Engineering, 2020, 8(1):
22-34.
[14] 钟红, 李宏瑾, 苏乃芳. 通货紧缩的定义、度量及对当前经济形势的判断[J]. 国际金融研究, 2015(7): 33-43.
[ZHONG H, LI H J, SU N F. Definition and measurement
of deflation and the status Quo in China[J]. Studies of
International Finance, 2015(7): 33-43.]
[15] 周程, 李松. 基于多重“分解—集成”策略的物流货运量预测[J]. 交通运输系统工程与信息, 2015, 15
(1): 150-158. [ZHOU C, LI S. Logistics freight volume
forecasting based on multilevel decompose-ensemble
method[J]. Journal of Transportation Systems
Engineering and Information Technology, 2015, 15(1):
150-158.]
|