Journal of Transportation Systems Engineering and Information Technology ›› 2024, Vol. 24 ›› Issue (5): 14-23.DOI: 10.16097/j.cnki.1009-6744.2024.05.002

Previous Articles     Next Articles

Prediction of Outbound Transportation Volume of Xinjiang Coal Railway by Integrating Sparrow Search with Long Short-Term Memory

LI Haijun*a,b, ZHANG Xiaoyanga, GAO Ruhua,b , WEI Dehuaa,b, CHEN Xiaominga,b   

  1. a. School of Transportation; b. Key Laboratory of Railway Industry on Plateau Railway Transportation Intelligent Management and Control, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2024-06-20 Revised:2024-09-13 Accepted:2024-09-19 Online:2024-10-25 Published:2024-10-22
  • Supported by:
    National Natural Science Foundation of China (72361020);China National Railway Group Corporation Science and Technology Research and Development Program Project (K2023X019)。

融合麻雀搜索与长短时记忆的疆煤铁路外运量预测

李海军*a,b,张晓洋a,高如虎a,b,魏德华a,b,陈晓明a,b   

  1. 兰州交通大学,a. 交通运输学院;b. 高原铁路运输智慧管控铁路行业重点实验室,兰州 730070
  • 作者简介:李海军(1978- ),男,青海乐都人,教授,博士。
  • 基金资助:
    国家自然科学基金(72361020);中国国家铁路集团有限公司科技研究开发计划项目(K2023X019)。

Abstract: To enhance the precision of predicting the Xinjiang's coal railway outbound volume transportation, a prediction model integrating the sparrow search algorithm and the long and short-term memory network (SSA-LSTM) is proposed. The model introduces the sparrow search algorithm to optimize the hyper-parameters of the LSTM model in order to improve the model prediction performance. Based on the data of Xinjiang coal rail outbound transportation volume from 2015 to 2022, the gray correlation analysis is employed to comprehensively evaluate the impact of factors, including economic and transportation aspects, ensuring that the selected factors exhibit a strong correlation with the prediction targets. Among the influencing factors, the GDP data is adjusted for Consumer Price Index (CPI) effects, and the refined data are then fed into the model for prediction. Finally, the model is applied to predict the Xinjiang's coal rail outbound transportation volume across short, medium, and long time horizons. The results demonstrate that the SSA-LSTM model outperforms both the BP neural network and the conventional LSTM model, achieving a Mean Absolute Percentage Error (MAPE) of 0.88% and a Root Mean Square Error (RMSE) of 49.9. Furthermore, incorporating CPI processing into the prediction process significantly reduces the prediction error, with MAPE and RMSE decreasing by 75.8% and 56.2%, respectively, compared to non-CPI-processed predictions. This study provides an effective approach for predicting Xinjiang's coal rail outbound transportation volume, offering important data insights that inform the strategic design of coal transportation routes out of Xinjiang.

Key words: railway transportation, outbound transportation volume of Xinjiang coal railway, SSA-LSTM model, grey correlation analysis, forecasting

摘要: 为准确预测新疆煤炭铁路外运量,本文提出一种融合麻雀搜索算法与长短时记忆网络的(SSA-LSTM)预测模型,模型引入麻雀搜索算法对长短时记忆网络(Long Short-Term Memory,LSTM)模型的超参数进行优化,以提高模型预测性能。以2015—2022年新疆煤炭铁路外运量数据为基础,综合考虑经济、运输等多种因素,对各影响因素的灰色关联度进行计算,验证所选因素与预测指标具有较强的关联度。对影响因素中的GDP数据进行消费者价格指数(Consumer PriceIndex, CPI)处理,并将处理后的数据输入模型进行预测,最后应用该模型对未来新疆煤炭初、近、远期铁路外运量进行预测。研究结果表明,SSA-LSTM 模型的预测效果显著优于 BP(BackPropagation)神经网络和传统 LSTM 模型,平均绝对百分比误差(MAPE)为 0.88%,均方根误差(RMSE)为 49.9。同时,与未经 CPI 处理的预测相比,经过 CPI 处理后预测误差更小,MAPE 和RMSE分别降低了75.8%和56.2%。本文为新疆煤炭铁路外运量预测提供了一种有效方法,为疆煤外运通道设计提供了重要数据支撑。

关键词: 铁路运输, 疆煤铁路外运量, SSA-LSTM模型, 灰色关联分析, 预测

CLC Number: