[1] RIM H, ABDEL-ATY M, MAHMOUD N. Multi-vehicle
safety functions for freeway weaving segments using lanelevel traffic data[J]. Accident Analysis & Prevention,
2023, 188: 107113.
[2] VAN BEINUM A, WEGMAN F. Design guidelines for
turbulence in traffic on Dutch motorways[J]. Accident
Analysis & Prevention, 2019, 132: 105285.
[3] YUAN J, ABDEL-ATY M, CAI Q, et al. Investigating
drivers' mandatory lane change behavior on the weaving
section of freeway with managed lanes: A driving
simulator study[J]. Transportation Research Part F:
Traffic Psychology and Behaviour, 2019, 62: 11-32.
[4] GOLOB T F, RECKER W W, ALVAREZ V M. Safety
aspects of freeway weaving sections[J]. Transportation
Research Part A: Policy and Practice, 2004, 38(1): 35-
51.
[5] SARHAN M, HASSAN Y, ABD EL HALIM A O. Safety
performance of freeway sections and relation to length
of speed-change lanes[J]. Canadian Journal of Civil
Engineering, 2008, 35(5): 531-541.
[6] MANNERING F, BHAT C R, SHANKAR V, et al. Big
data, traditional data and the tradeoffs between
prediction and causality in highway-safety analysis[J].
Analytic Methods in Accident Research, 2020, 25:
100113.
[7] ZHENG L, SAYED T, MANNERING F. Modeling traffic
conflicts for use in road safety analysis: A review of
analytic methods and future directions[J]. Analytic
Methods in Accident Research, 2021, 29: 100142.
[8] ZHANG J, LEE J, ABDEL-ATY M, et al. Enhanced
index of risk assessment of lane change on expressway
weaving segments: A case study of an expressway in
China[J]. Accident Analysis & Prevention, 2023, 180:
106909.
[9] 张河山, 范梦伟, 谭鑫, 等. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J/OL]. 吉林大学学报(工学版), (2023-12-28) [2024-04-10]. https://doi.org/
10.13229/j.cnki.jdxbgxb.20230779. [ZHANG H S, FAN
M W, TAN X, et al. Dense small object vehicle detection in UAV aerial images using improved YOLOX[J/OL].
Journal of Jilin University(Engineering and Technology
Edition), (2023-12-28) [2024-04-10]. https://doi.org/
10.13229/j.cnki.jdxbgxb.20230779.]
[10] 谢济铭, 夏玉兰, 钱正富, 等. 考虑智能网联近邻车辆信息的交织区换道风险预警[J]. 交通运输工程学报,
2023, 23(2): 287-300. [XIE J M, XIA Y L, QIAN Z F,
et al. Lane-change risk warning in interweaving area
considering information from intelligent connected nearneighboring vehicles[J]. Journal of Traffic and
Transportation Engineering, 2023, 23(2): 287-300.]
[11] WOJKE N, BEWLEY A, PAULUS D. Simple online and
realtime tracking with a deep association metric[C]//2017
IEEE international conference on image processing
(ICIP), IEEE, 2017: 3645-3649.
[12] ZOU H, ZHU S, JIANG R, et al. Traffic conflicts in the
lane-switching sections at highway reconstruction zones
[J]. Journal of Safety Research, 2023, 84: 280-289.
[13] 胡立伟, 张瑞杰, 赵雪亭, 等. 道路环形交叉口机动车冲突风险区识别模型研究[J]. 交通运输系统工程与信息, 2024, 24(1): 168-178. [HU L W, ZHANG R J,
ZHAO X T, et al. Roundabout motor vehicle conflict risk
identification model[J]. Journal of Transportation
Systems Engineering and Information Technology, 2024,
24(1): 168-178.]
[14] 徐进, 崔强, 常旭, 等. 苜蓿叶形互通立交进/出口的纵向驾驶行为特征[J]. 东南大学学报 (自然科学版),
2019, 49(6): 1205-1214. [XU J, CUI Q, CHANG X,
et al. Longitudinal driving behavior characteristics at
approaching/departing areas of clover leaf interchange[J].
Journal of Southeast University(Natural Science Edition),
2019, 49(6): 1205-1214.]
[15] GORE N, CHAUHAN R, EASA S, et al. Traffic conflict
assessment using macroscopic traffic flow variables: A
novel framework for real-time applications[J]. Accident
Analysis & Prevention, 2023, 185: 107020.
[16] PROKHORENKOVA L, GUSEV G, VOROBEV A, et al.
CatBoost: Unbiased boosting with categorical features[J].
Advances in Neural Information Processing Systems,
2018, 31: 6639-6649.
|