[1]杨洋,王文慧,吴先宇,等.高速公路非常规交通事故研究综述[J]. 应用基础与工程科学学报,2024,32(3):
601-626. [YANG Y, WANG W H, WU X Y, et al.
Review of the research toward freeway unconventional
traffic accidents[J]. Jorunal of Basic Science and
Engineering, 2024, 32(3): 601-626.]
[2] ARDITI D, LEE D, POLAT G. Fatal accidents in
nighttime vs. daytime highway construction work zones
[J]. Journal of Safety Research, 2007, 38(4): 399-405.
[3] RANGASWAMY R, ALNAWMASI N, ZHANG Y.
Analysis of injury severity of work zone crashes on rural
and urban work zones: Accounting for out-of-sample
prediction and temporal instability[J]. Accident Analysis
&Prevention, 2024, 203: 107641.
[4]
THEOFILATOS
A,
ZIAKOPOULOS
A,
PAPADIMITRIOU E, et al. Meta-analysis of the effect
of road work zones on crash occurrence[J]. Accident
Analysis & Prevention, 2017, 108: 1-8.
[5]ZHANG K, HASSAN M. Identifying the factors
contributing to injury severity in work zone rear-end
crashes[J]. Journal of Advanced Transportation, 2019,
2019(1): 4126102.
[6]吕能超,王玉刚,周颖,等.道路交通安全分析与评价方法综述[J]. 中国公路学报, 2023, 36(4): 183-201.
[LV N C, WANG Y G, ZHOU Y, et al. Review of road
traffic safety analysis and evaluation methods[J]. China
Journal of Highway and Transport, 2023, 36(4): 183
201.]
[7]杨洋,贺昆,王云鹏,等.面向动态交通流的高速公路事故风险模型空间移植研究[J].交通运输系统工程与信息,2023, 23(3): 174-186. [YANG Y, HE K, WANG Y
P, et al. Spatial transplantation for modeling of freeway
traffic crash risk based on dynamic traffic flow[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2023, 23(3): 174-186.]
[8]WENG J, XUE S, YANG Y, et al. In-depth analysis of
drivers' merging behavior and rear-end crash risks in
work zone merging areas[J]. Accident Analysis &
Prevention, 2015, 77: 51-61.
[9]
MENG Q, WENG J. Evaluation of rear-end crash risk at
work zone using work zone traffic data[J]. Accident
Analysis & Prevention, 2011, 43(4): 1291-1300.
[10] 李耘, 张生瑞,茹渑博.高速公路施工区车流跟驰追尾冲突风险[J]. 长安大学学报(自然科学版),2017,37(2):
81-88. [LI Y, ZHANG S R, RU M B. Car following rear
end conflict risk of freeway work zone[J]. Journal of
Chang'an University(Natural Science Edition), 2017, 37
(2): 81-88.]
[11] KIM S, KIM Y, KIM Y, et al. PID-based freeway work
zone merge control with traffic state prediction under
mixed traffic flow of connected automated vehicles and
manual vehicles[J]. Journal of Advanced Transportation,
2024, 2024(1): 5554608.
[12] 蒋若曦, 朱顺应,王磊,等.基于交通冲突的高速公路施工区安全评价[J]. 中国安全科学学报,2019,29(6):
116-121. [JIANG R X, ZHU S Y, WANG L, et al. Traffic
safety assessment of highway workzone based on traffic
conflict[J]. China Safety Science Journal, 2019, 29(6):
116-121.]
[13] ZHOU S, YANG X, YANG J, et al. Speed characteristics
and safety risk level evaluation for nighttime roadway
work area[J]. Procedia-Social and Behavioral Sciences,
2013, 96: 2713-2724.
[14] WANG J, SONG H, FU T, et al. Crash prediction for
freeway work zones in real time: A comparison between
convolutional neural network and binary logistic
regression
model[J].
International
Journal
of
Transportation Science and Technology, 2022, 11(3):
484-495.
[15] MOGHADDAM F R, AFANDIZADEH S, ZIYADI M.
Prediction of accident severity using artificial neural
networks[J]. International Journal of Civil Engineering,
2011, 9(1): 41-48.
[16] SUN J. Real- time crash prediction on urban
expressways: Identification of key variables and a hybrid
support vector machine model[J]. IET Intelligent
Transport Systems, 2016, 10(5): 331-337.
[17] WANG B, CHEN T, ZHANG C, et al. Toward safer
highway work zones: An empirical analysis of crash risks
using improved safety potential field and machine
learning techniques[J]. Accident Analysis & Prevention,
2024, 194: 107361.
[18] JIANG R, WU Q. The night driving behavior in a car
following model[J]. Physica A: Statistical Mechanics and
Its Applications, 2007, 375(1): 297-306.
[19] 陈吉清,翁楚滨,兰凤崇.智能车辆换道潜在冲突分析与风险量化方法[J]. 汽车工程, 2021, 43(11): 1565
1576. [CHEN J Q, WENG C B, LAN F C. Potential
conflict analysis and risk quantification method of
intelligent
vehicle
lane
change[J].Automotive Engineering, 2021, 43(11): 1565-1576.]
[20] CHEN T, GUESTRIN C. Xgboost: A scalable tree
boosting system[C]// New York: Proceedings of the 22nd
Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining, 2016.
[21] 孙国锋, 景云,李和壁,等.基于可解释机器学习框架的列车乘车区段客流分布预测方法[J].交通运输系统工程与信息,2024, 24(2): 249-262. [SUN G F, JING Y,
LI H B, et al. An interpretable machine learning
framework-based approach for predicting passenger flow
distribution in train riding sections[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(2): 249-262.]
[22] LUNDBERG S M, ERION G G, LEE S. A unified
approach to interpreting model predictions[C]//New
York: Proceedings of the 31st International Conference
on Neural Information Processing Systems, 2018.
|