Journal of Transportation Systems Engineering and Information Technology ›› 2010, Vol. 10 ›› Issue (3): 136-141 .

• Systems Engineering Theory and Methods • Previous Articles     Next Articles

On-ramp Neuro-fuzzy Metering for Urban Freeway

CI Yu-sheng 1,2; WU Li-na 3; PEI Yu-long 1; LING Xian-zhang 2   

  1. 1.School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China;2.Postdoctoral Station of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China; 3.Department of Automobile, Heilongjiang Institute of Technology, Harbin 150050, China
  • Received:2009-10-18 Revised:2009-11-16 Online:2010-06-25 Published:2010-06-25
  • Contact: CI Yu-sheng

城市快速路入口匝道神经模糊控制

慈玉生*1,2;吴丽娜3;裴玉龙1;凌贤长2   

  1. 1.哈尔滨工业大学 交通科学与工程学院,哈尔滨 150090; 2.哈尔滨工业大学 土木工程博士后流动站,哈尔滨 150090; 3.黑龙江工程学院 汽车工程系 ,哈尔滨 150050
  • 通讯作者: 慈玉生
  • 作者简介:慈玉生(1980-),男,安徽庐江人,讲师,博士后
  • 基金资助:

    国家自然科学基金(50778056);黑龙江省教育厅项目(11541295);哈工大交通学院“创新与发展基金”(200907)

Abstract: The paper introduces the neural network and fuzzy logic methods into on-ramp metering of urban freeway. In which, the advantages of these two methods are considered, namely, the learning ability, optimization ability, and interconnection structure of the neural network, and the human-like thought manner and professional knowledge integration of fuzzy logic method. The suitable input and output variables are selected by optimization, and are get fuzzification and unfuzzification. Then, the corresponding fuzzy inference rules are established, and the relation generating method and inference synthesis algorithm are also developed. The membership function styles and parameters are determined by the adaptive neuro training method. An example was also given to illustrate the proposed method. The results indicate an increase of operating efficiency and a decrease of accident rate with the application of on-ramp metering of neuro-fuzzy.

Key words: urban traffic, urban freeway, on-ramp metering, neuro-fuzzy, membership function

摘要: 综合考虑神经网络的学习能力、优化能力及连接式结构和模糊逻辑类似于人思维方式并易于嵌入专家知识的特点,将神经网络和模糊逻辑算法共同应用于城市快速路入口匝道驶入控制系统中. 通过优化选择输入输出变量并对其进行模糊化和反模糊化处理,建立相应的模糊推理规则、关系生成方法及推理合成算法,并利用神经自适应训练方法确定隶属函数的形式和参数,最后给出应用示例. 研究结果表明,利用神经模糊原理进行快速路入口匝道驶入控制能够有效提高匝道连接段的利用效率,减少交通事故.

关键词: 城市交通, 城市快速路, 入口匝道控制, 神经模糊, 隶属函数

CLC Number: