Journal of Transportation Systems Engineering and Information Technology ›› 2012, Vol. 12 ›› Issue (2): 62-66.

• Intelligent Transportation System and Information Technology • Previous Articles     Next Articles

Traffic Information Coverage Model of Probe Vehicle System Based on Link Characteristics Variables

RAO Zong-hao 1,2, YAO En-jian 2   

  1. 1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China; 2. Key Laboratory for Urban Transportation Complex Systems Theory and Technology of the Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
  • Received:2011-11-07 Revised:2012-01-05 Online:2012-04-25 Published:2012-04-27

基于路段属性变量的浮动车覆盖率模型研究

饶宗皓1,2, 姚恩建*2   

  1. 1. 同济大学 道路与交通工程教育部重点实验室,上海 200092; 2. 北京交通大学 城市交通复杂系统理论与技术教育部重点实验室,北京 100044
  • 作者简介:饶宗皓(1988-),男,江西高安人,硕士生.
  • 基金资助:

    北京交通大学人才基金(T10J00020).

Abstract: As a new method of traffic information collection, the probe vehicle technology has been widely used. The current challenge is to determine the number of probe vehicles in the premise of certain coverage. This paper summarizes the researches on the domestic and international traffic information coverage models of probe vehicle, and analyzes the shortcomings of existing products. Considering the coverage mechanism and effects of link characteristics, a coverage model including link characteristics is proposed. For model solution, the maximum likelihood estimation is adopted to obtain the parameters. Finally, an example is presented using the field data from probe vehicle system of Nanjing city of China. The result proves the feasibility and effectiveness of the proposed model, and this method could provide reference to the probe vehicle data collection scheme in the cities.

Key words: intelligent transportation, coverage model, maximum likelihood estimation, probe vehicle, link characteristics

摘要: 作为一种新型的交通信息采集方式,浮动车技术得到了广泛的应用.在浮动车系统中,目前的难点在于浮动车配置数量的确定,即在保证一定覆盖率的前提下,如何合理配置路网中的浮动车数量.本文针对现有浮动车覆盖率模型的局限性,从覆盖率的产生机理入手,以路段为研究对象,研究路段属性对单位时间内浮动车通过该路段次数的影响,建立基于路段属性变量的浮动车覆盖率模型,并采用极大似然估计法求解.最后结合南京市的浮动车数据进行实例分析,验证了方法的可行性和有效性,可以为浮动车配置计划的确定提供参考依据.

关键词: 智能交通, 覆盖率模型, 极大似然估计, 浮动车, 路段属性

CLC Number: