[1] LEVINSON D. The value of advanced traveler information systems for route choice[J]. Transportation Research Part C, 2003, 11(1): 75-87.
[2] CASCETTA E, CANTARELLA G E. A day-to-day and within- day dynamic stochastic assignment model[J]. Transportation Research Part A, 1991, 25(5): 277-291.
[3] 张兆泽, 黄海军. 社交网络信息对出行时刻选择行为的影响[J]. 交通运输系统工程与信息, 2017, 17(5): 22-28. [ZHANG Z Z, HUANG H J. Influence of social network information on travel time choice behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 22-28.]
[4] LOU X M, CHENG L, CHU Z M. Modelling travellers' en- route path switching in a day- to- day dynamical system[J]. Transportmetrica B, 2017, 5(1): 17-41.
[5] IIDA Y, AKIYAMA T, UCHIDA T, et al. Experimental analysis of dynamic route choice behavior[J]. Transportation Research Part B, 1992, 26(1): 17-32.
[6] RAPOPORT A, MAK V, ZWICK R. Navigating congested networks with variable demand: Experimental evidence[J]. Journal of Economic Psychology, 2006, 27 (5): 648-666.
[7] MENEGUZZER C. Contrarians do better: Testing participants' response to information in a simulated day- to- day route choice experiment[J]. Travel Behaviour and Society, 2019, 15: 146-156.
[8] QI H, MA S, JIA N, et al. Individual response modes to pre-trip information in congestible networks: laboratory experiment[J]. Transportmetrica A, 2019, 15(2): 376- 395.
[9] WANG J H, RAKHA H. Empirical study of effect of dynamic travel time information on driver route choice behavior[J]. Sensors, 2020, 20(11): 3257.
[10] HUANG H J, LI Z C. A multiclass, multicriteria Logitbased traffic equilibrium assignment model under ATIS [J]. European Journal of Operational Research, 2007, 176(3): 1464-1477. |