[1] 王庆云, 毛保华, 张国伍. 我国交通运输系统工程的演化[J]. 交通运输系统工程与信息, 2021, 21(05): 2-11. [WANG Q Y, MAO B H, ZHANG G W. Evolution of transportation systems engineering in China[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(05): 2-11.]
[2] PERVEZ A, HUANG H L, LEE J, et al. Factors Affecting Injury Severity of Crashes in Freeway Tunnel Groups: A Random Parameter Approach[J]. Journal of Transportation Engineering, Part A: Systems, Vol. 148, Issue 4 (April 2022).
[3] 杨洋. 考虑区域类型差异的高速公路事故风险识别与交通安全评价研究[D]. 北京:北京交通大学, 2020. [YANG Y. Research on the method of freeway crash risk identification and comprehensive traffic safety evaluation considering the regional type difference[D]. Beijing: Beijing Jiaotong University, 2020.]
[4] MADANAT S, LIU P. A prototype system for real-time incident likelihood prediction[R]. Washington: United States. Federal Highway Administration, 1995.
[5] LORD D. Modeling motor vehicle crashes using poisson-gamma models: Examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter[J]. Accident Analysis & Prevention, 2006, 38(4): 751-766.
[6] YANG Y, HE K, WANG Y, et al. Identification of dynamic traffic crash risk for cross-area freeways based on statistical and machine learning methods[J]. Physica A: Statistical Mechanics and its Applications, 595(2022): 127083.
[7] ELASSAD Z, MOUSANNIF H, MOATASSIME H A. A real-time crash prediction fusion framework: An imbalance-aware strategy for collision avoidance systems[J]. Transportation Research Part C: Emerging Technologies, 2020, 118:102708.
[8] 游锦明, 方守恩, 唐棠, 等. 不良交通流状态实时监测支持向量机模型算法研究[J]. 交通运输系统工程与信息, 2018, 18 (4): 83-87, 95. [YOU J M, FANG S E, TANG T, et al. A support vector machine approach on real-time hazardous traffic state detection[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (4): 83-87, 95.]
[9] YUAN Z, HE K, YANG Y. A roadway safety sustainable approach: modeling for real-time traffic crash with limited data and its reliability verification[J]. Journal of Advanced Transportation, 2022, 2022:1570521.
[10] YANG Y, YUAN Z, MENG R. Exploring traffic crash occurrence mechanism towards cross-area freeways via an improved data mining approach [J]. Journal of Transportation Engineering Part A Systems, Vol. 148, Issue 8 (August 2022).
[11] PANDE A, DAS A, MOHAMED A, et al. Real-time crash risk estimation are all freeways created equal[J]. Transportation Research Record, 2011, 2237: 60-66.
[12] 游锦明,方守恩,张兰芳,等. 高速公路实时事故风险研判模型及可移植性[J].同济大学学报(自然科学版),2019,47(03):347-352. [YOU J M, FANG S E, ZHANG L F, et al. Real-time crash risk prediction models and transferability analysis on freeways [J]. Journal of Tongji University (Natural Science), 2019,47(03):347-352.]
[13] SAWALHA Z, SAYED T. Transferability of accident prediction models[J]. Safety Science, 2006, 44: 209-219.
[14] CHEN Y, PERSAUD B, SACCHI E. Improving transferability of safety performance functions by Bayesian model averaging[C]. Presented at the 90th Annual Meeting of the Transportation Research Board, Washington, D. C., 2011.
[15] 徐铖铖. 高速公路交通流运行状态与交通安全关系研究[D]. 南京: 东南大学, 2014. [XU C C. Exploring the relationships between traffic flow states and traffic safety on freeways [D]. Nanjing: Southeast University, 2014]
[16] [YANG Yang, YIN Yuexiu, WANG Yunpeng, MENG Ran, YUAN Zhenzhou]. Forthcoming. "[Modeling towards freeway real-time traffic crash risk based on dynamic traffic flow considering temporal effect difference]. “[Journal of Transportation Engineering, Part A: Systems]. [10.1061/JTEPBS/TEENG-7717]
|