[1] 高坤, 涂辉招, 李浩, 等. 出行者对不同交通方式行程时间可靠度和车内拥挤度的感知差异性[J]. 中国公路学报, 2017, 30(7): 126-133. [GAO K, TU H Z, LI H, et al. Travelers' perception differences in travel time reliability and crowding of mode- choice in multimodal networks[J]. China Journal of Highway and Transport, 2017, 30(7): 126-133.]
[2] POSAWANG P, PHOSAARD S, POLNIGONGIT W, et al. Perception- based road traffic congestion classification using neural networks[J]. Lecture Notes in Engineering & Computer Science, 2009, 60(1): 237- 248.
[3] STERZER P, KLEINSCHMIDT A, REES A G. The neural bases of multistable perception[J]. Trends in Cognitive Sciences, 2009, 13(13): 310-318.
[4] KONG X, XU Z, SHEN G, et al. Urban traffic congestion estimation and prediction based on floating car trajectory data[J]. Future Generation Computer Systems, 2016(61): 97-107.
[5] RAO A M, RAO K R. Measuring urban traffic congestion: A review[J]. International Journal for Traffic & Transport Engineering, 2012, 2 (4): 286-305.
[6] YANG Y, CUI Z, WU J, et al. Fuzzy C-means clustering and opposition- based reinforcement learning for traffic congestion identification[J]. Journal of Information & Computational Science, 2012, 9 (9): 2441-2450.
[7] KANAI R, BAHRAMI B, REES G. Human parietal cortex structure predicts individual differences in perceptual rivalry[J]. Current Biology Cb, 2011, 20(18): 1626-1630.
[8] 苏晶晶. 关于分层模型的样本量研究[J]. 统计与决策, 2014, 33(8): 7-11. [SU J J. The study of sample size in multilevel model[J]. Statistics & Decision, 2014, 33(8): 7-11.]
[9] 长沙市统计局. 长沙统计年鉴·2014[M]. 北京: 中国统计出版社, 2014. [Changsha Municipal Bureau of Statistics. Changsha statistical yearbook 2014[M]. Beijing: China Statistics Press, 2014.] |