[1] 王洋, 朱力强, 余祖俊, 等. 高速铁路场景的分割与识别算法[J]. 光学学报, 2019, 39(6): 119-126. [WANG Y, ZHU L Q, YU Z J, et al. Segmentation and recognition algorithm for high- speed railway scene[J]. Acts Optica Sinica, 2019, 39(6): 119-126.]
[2] 王忠立, 蔡伯根. 一种基于几何约束的轨道提取方法研究[J]. 交通运输系统工程与信息, 2017, 17(6): 56- 62, 84. [WANG Z L, CAI B G. Geometry constraintsbased method for visual rail track extraction[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 56-62, 84.]
[3] 王洋, 余祖俊, 朱力强, 等. 基于CNN的高速铁路侵限异物特征快速提取算法[J]. 仪器仪表学报, 2017, 38 (5): 1267-1275. [WANG Y, YU Z J, ZHU L Q, et al. Fast feature extraction algorithm for high-speed railway clearance intruding objects based on CNN[J]. Chinese Journal of Scientific Instrument, 2017, 38(5): 1267- 1275.]
[4] 牛宏侠, 张肇鑫, 宁正, 等. 铁路轨道异物完整性检测与跟踪算法研究[J]. 交通运输系统工程与信息, 2019, 19(1): 45-54. [NIU H X, ZHANG Z X, NING Z, et al. Detection and tracking algorithm of foreign integrity in railway tracks[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1): 45-54.]
[5] ELGAMMAL A, Harwood D, Davis L. Non-parametric model for background subtraction[C]. European Conference on Computer Vision (ECCV), Ireland, Springer Berlin Heidelberg, 2000: 751-767.
[6] BARNICH O, VAN DROOGENBROECK M. ViBe: A universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724.
[7] HOFMANN M, TIEFENBACHER P, RIGOLL G. Background segmentation with feedback: The pixelbased adaptive segmenter[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), USA, IEEE, 2012: 38-43.
[8] ST-CHARLES P L, BILODEAU G A, BERGEVIN R. SubSENSE: A universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2014, 24(1): 359-373.
[9] JIANG S, LU X. WeSamBE: A weight- sample- based method for background subtraction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2105-2115.
[10] CHEN T Y, BIGLARI- ABHARI M, WANG I K. SuperBE: Computationally light background estimation with superpixels[J]. Journal of Real-Time Image Processing, 2019, 16(6): 2319-2335.
[11] BOUWMANS T, JAVED S, SULTANA M, et al. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[J]. Neural Networks, 2019(117): 8-66.
[12] BABAEE M, DINH D T, RIGOLL G. A deep convolutional neural network for video sequence background subtraction[J]. Pattern Recognition, 2018 (76): 635-649.
[13] LIN C, YAN B, TAN W. Foreground detection in surveillance video with fully convolutional semantic network[C]. IEEE International Conference on Image Processing (ICIP), Greece, IEEE, 2018: 4118-4122.
[14] LONG A L, KELES H Y. Learning multi-scale features for foreground segmentation[J]. Arxiv, 2018, DOI: 10.1007/s10044-019-00845-9.
[15] WANG Y, YU Z, ZHU L. Foreground detection with deeply learned multi-scale spatial-temporal features[J]. Sensors, 2018, 18(12): 4269.
[16] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. |