Journal of Transportation Systems Engineering and Information Technology ›› 2020, Vol. 20 ›› Issue (5): 72-78.

Previous Articles     Next Articles

Information Release Strategy of Urban Rail Transit Based on Reinforcement Learning

JIA Fei-fan1a, 1b, JIANG Xi1a, LI Hai-ying1a, YU Xue-qiao2   

  1. 1a. State Key Lab of Rail Traffic Control & Safety, 1b. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; 2. Institute of Transportation and Economy, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
  • Received:2020-05-22 Revised:2020-08-02 Online:2020-10-25 Published:2020-10-26

基于强化学习的城轨信息发布策略研究

贾飞凡1a,1b,蒋熙1a,李海鹰*1a,于雪峤2   

  1. 1.北京交通大学 a. 轨道交通控制与安全国家重点实验室,b. 交通运输学院,北京100044; 2.中国铁道科学研究院集团有限公司 运输与经济研究所,北京100081
  • 作者简介:贾飞凡(1993-),男,安徽宣城人,博士生.
  • 基金资助:

    中央高校基本科研业务费专项基金/ Fundamental Research Funds for the Central Universities of Ministry of Education of China(2018YJS194).

Abstract:

Guidance information can change the choice behavior of passengers and thus network passenger flow distribution. Information release is one of the key measures to alleviate the congestion problem from demand ideas. A method is proposed to generate an information release strategy based on reinforcement learning. The system state is extracted based on the load rate of passenger flow in each section in the network. The information release action is composed of the recommended paths of each OD. The reward value of implementing an information release action is evaluated according to system state change. By an urban rail transit dynamic passenger flow simulation system, the Q- learning algorithm is employed to obtain optimal information release strategy. A practical network is taken as an example to verify the proposed method. It was found that network congestion can be alleviated by using the proposed information release strategy.

Key words: intelligent transportation, information release, reinforcement learning, passenger flow guidance, Q- learning

摘要:

通过信息发布影响乘客选择行为进而改变路网客流分布,是从需求侧缓解拥堵问题的重要手段之一.本文提出基于强化学习的城市轨道交通信息发布策略生成方法,根据路网各区间客流满载率提取系统状态,再根据系统状态在学习器生成由各OD推荐路径组成的信息发布动作,对乘客进行信息发布;通过发布信息后路网系统状态变化,评估获得实施信息发布动作的奖励值.依托城市轨道交通客流分布动态仿真系统,使用 Q- learning 算法进行训练,获得最优信息发布策略.以实际路网为例进行算例验证,通过对比有无信息发布情景得到,在有信息发布情景下路网客流拥堵情况得到了较大缓解.

关键词: 智能交通, 信息发布, 强化学习, 客流诱导, Q- learning

CLC Number: