[1] YI T, ZHANG C, LIN T, et al. Research on the spatialtemporal distribution of electric vehicle charging load
demand: A case study in China[J]. Journal of Cleaner
Production, 2020, 242: 118457.
[2] SHAHRIAR S, AL-ALI A R, OSMAN A H, et al.
Machine learning approaches for EV charging behavior:
A Review[J]. IEEE Access, 2020, 8: 168980-168993.
[3] CHUNG Y W, KHAKI B, LI T, et al. Ensemble machine
learning- based algorithm for electric vehicle user
behavior prediction[J]. Applied Energy, 2019, 254:
113732.
[4] SHEN Y, FANG W, YE F, et al. EV charging behavior
analysis using hybrid intelligence for 5G smart grid[J].
Electronics, 2020, 9(1): 80.
[5] ZHU J, YANG Z, GUO Y, et al. Short- term load
forecasting for electric vehicle charging stations based on
deep learning approaches[J]. Applied Sciences, 2019, 9 (9): 1723.
[6] GRAMACKI A. Nonparametric kernel density estimation
and its computational aspects[M]. Berlin: Springer
International Publishing, 2018.
[7] WANG B, WANG Y, NAZARIPOUYA H, et al.
Predictive scheduling framework for electric vehicles
with uncertainties of user behaviors[J]. IEEE Internet of
Things Journal, 2016, 4(1): 52-63.
[8] CHEN Z, ZHANG Z, ZHAO J, et al. An analysis of the
charging characteristics of electric vehicles based on
measured data and its application[J]. IEEE Access,
2018, 6: 24475-24487.
[9] CHUNG Y W, KHAKI B, et al. Electric vehicle user
behavior prediction using hybrid kernel density estimator
[C]//2018 IEEE International Conference on
Probabilistic Methods Applied to Power Systems
(PMAPS), IEEE, 2018: 1-6.
[10] 缪鹏彬, 余娟, 史乐峰, 等. 基于改进非参数核密度估
计和拉丁超立方抽样的电动公共客车负荷模型[J]. 电
工技术学报, 2016, 31(4): 187-193. [MIAO P B, YU J,
SHI L F, et al. Electric public bus load model based on
improved kernel density estimation and Latin hypercube
sampling[J]. Transactions of China Electrotechnical
Society, 2016, 31(4): 187-193.]
[11] NOSRATABADI H, MOHAMMADI M, KARGARIAN A.
Nonparametric probabilistic unbalanced power flow with
adaptive kernel density estimator[J]. IEEE Transactions
on Smart Grid, 2018, 10(3): 3292-3300.
[12] CHAUDHURI P, MARRON J S. Scale space view of
curve estimation[J]. Annals of Statistics, 2000: 408-428.
[13] KHORRAMDEL B, CHUNG C Y, SSFARI N, et al. A
fuzzy adaptive probabilistic wind power prediction
framework using diffusion kernel density estimators[J].
IEEE Transactions on Power Systems, 2018, 33(6): 7109-
7121.
[14] BOTEV Z I, GROTOWSKI J F, KROESE D P. Kernel
density estimation via diffusion[J]. The Annals of
Statistics, 2010, 38(5): 2916-2957.
|