[1] GONZÁLEZ M C, HIDALGO C A, BARABASI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453 (7196): 779-782.
[2]王垚, 钮心毅, 宋小冬. 基于城际出行的长三角城市群空间组织特征[J]. 城市规划, 2021, 45(11): 43-53. [WANG Y, NIU X Y, SONG X D. Spatial organizational characteristics of the yangtze river delta urban agglomeration based on intercity trips[J]. City Planning Review, 2021, 45(11): 43-53.]
[3] HOTEIT S, SECCI S, SOBOLEVSKY C, et al. Estimating human trajectories and hotspots through mobile phone data[J]. Computer Networks, 2014, 64: 296-307.
[4] LI M X, GAO S, LU F et al. Reconstruction of human movement trajectories from large-scale low-frequency mobile phone data[J]. Computers, Environment and Urban Systems, 2019, 77: 101346.
[5] YANG F, YAO Z X, JIN J P, et al. Performance evaluation of handoff-based cellular traffic monitoring systems using combined wireless and traffic simulation platform[J]. Journal of Intelligent Transportation Systems, 2016, 20(2): 113-124.
[6] QIAO S J, SHEN D Y, WANG X T, et al. A self-adaptive parameter selection trajectory prediction approach via hidden markov models[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 284-296.
[7] BACHIR D, KHODABANDELOU G, GAUTHIER V, et al. Inferring dynamic origin-destination flows by transport mode using mobile phone data[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 254-275.
[8] WANG L L, YANG F, JIN J P, et al. Detection of traffic pattern based on fuzzy clustering and wavelet analysis model at different signaling positioning frequencies[J]. Transportation Research Record, 2022, 2676(8), 601-618.
[9] CHEN J T, XIONG C, CAI M. A travel mode identification framework based on cellular signaling data[J]. Mobile Information Systems, 2022: 2113213.
[10] PENG Z H, BAI G K, WU H, et al. Travel mode recognition of urban residents using mobile phone data and mapAPI[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(9): 2574-2589.
[11] CHEN X X, XU X D, YANG C. Trip mode inference from mobile phone signaling data using logarithm gaussian mixture model[J]. Transportation Research Part C: Emerging Technologies, 2020, 13(1): 429-445.
[12] CHEN H K, HO H C, WU L Y et al. Two-stage procedure for transportation mode detection based on sighting data[J]. Transportmetrica A: Transport Science, 2022, 1:1-35.
[13] LU Z B, LONG Z, XIA J X, et al. A random forest model for travel mode identification based on mobile phone signaling data[J]. Sustainability, 2019, 11(21): 1-21.
|