[1] 鲍琼, 屈琦凯, 唐涵润, 等. 网联环境下基于多驾驶人风险评价的不良行为主动干预研究[J]. 交通运输系统工程与信息, 2022, 22(4): 283-292. [BAO Q, QU Q K,
TANG H R, et al. Multi-drivers risk evaluation based
proactive intervention of drivers' risky behavior under
connected transportation contexts[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(4): 283-292.]
[2] HAN J, WANG X, WANG G. Modeling the car-following
behavior with consideration of driver, vehicle, and
environment factors: A historical review[J].
Sustainability, 2022, 14(13): 8179.
[3] WEI D, LIU H. Analysis of asymmetric driving behavior
using a self-learning approach[J]. Transportation Research
Part B: Methodological, 2013, 47: 1-14.
[4] LAVAL J A, LECLERCQ L. Microscopic modeling of the
relaxation phenomenon using a macroscopic lane-changing model[J]. Transportation Research Part B:
Methodological, 2008, 42(6): 511-522.
[5] HIGGS B, ABBAS M. Segmentation and clustering of car-following behavior: Recognition of driving patterns[J].
IEEE Transactions on Intelligent Transportation
Systems, 2014, 16(1): 81-90.
[6] ZHANG D, CHEN X, WANG J, et al. A comprehensive
comparison study of four classical car-following models
based on the large-scale naturalistic driving experiment
[J]. Simulation Modelling Practice and Theory, 2021,
113: 102383.
[7] RAO H, ZHANG D, QIN G, et al. Investigating the intradriver heterogeneity in car following behavior based on
large-scale naturalistic driving study[J]. Transportmetrica
B: Transport Dynamics, 2023, 11(1): 1363-1383.
[8] TREIBER M, HENNECKE A, HELBING D. Congested
traffic states in empirical observations and microscopic
simulations[J]. Physical Review E, 2000, 62(2): 1805.
[9] AHMED A, NGODUY D, ADNAN M, et al. On the
fundamental diagram and driving behavior modeling of
heterogeneous traffic flow using UAV-based data[J].
Transportation Research Part A: Policy and Practice,
2021, 148: 100-115.
[10] 张文娟, 杨皓哲, 张彬, 等. 考虑多时间尺度特征的城市轨道交通短时客流量预测模型[J]. 交通运输系统工程与信息, 2022, 22(6): 212-223. [ZHANG W J,
YANG H Z, ZHANG B, et al. Short-time passenger flow
prediction model of urban rail transit considering multi-timescale features[J]. Journal of Transportation Systems
Engineering and Information Technology, 2022, 22(6):
212-223.]
[11] VASWANI A, SHAZEER N, PARMAR N, et al.
Attention is all you need[J]. Advances in Neural
Information Processing Systems, 2017, 30: 6000-6010.
[12] AHSAN H. A study on how data quality influences
machine learning predictability and interpretability for
tabular data[D]. Youngstown: Youngstown State
University, 2022.
[13] LU Y, RAI H, CHANG J, et al. Context- aware scene
graph generation with seq2seq transformers[C]//
Proceedings of the IEEE/CVF international conference
on computer vision. Online: IEEE Xplore, 2021. 15931-
15941.
[14] AKIBA T, SANO S, YANASE T, et al. Optuna: A nextgeneration hyperparameter optimization framework[C]//
Proceedings of the Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining: Anchorage: ACM, 2019:
2623-2631.
[15] HOCHREITER S, SCHMIDHUBER J. Long short-term
memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
|