交通运输系统工程与信息 ›› 2023, Vol. 23 ›› Issue (5): 33-44.DOI: 10.16097/j.cnki.1009-6744.2023.05.004

• 智能交通系统与信息技术 • 上一篇    下一篇

基于自然驾驶数据的驾驶人跟驰行为内在异质性预测与建模

张铎1,饶红玉1, 2,刘佳琦1,王俊骅1,孙剑*1   

  1. 1. 同济大学,道路与交通工程教育部重点实验室,上海 201804;2. 杭州海康威视数字技术股份有限公司,杭州 310051
  • 收稿日期:2023-04-26 修回日期:2023-06-25 接受日期:2023-07-10 出版日期:2023-10-25 发布日期:2023-10-22
  • 作者简介:张铎(1994- ),男,山东菏泽人,博士生。
  • 基金资助:
    国家自然科学基金(52125208,52232015);中央高校学科交叉重点项目 (2022-5-ZD-02)。

Intra-driver Heterogeneity Prediction and Modeling Based on Naturalistic Driving Experiment

ZHANG Duo1,RAO Hong-yu1, 2,LIU Jia-qi1,WANG Jun-hua1,SUN Jian* 1   

  1. 1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China; 2. Hangzhou Hikvision Digital Technology Co. Ltd., Hangzhou 310051, China
  • Received:2023-04-26 Revised:2023-06-25 Accepted:2023-07-10 Online:2023-10-25 Published:2023-10-22
  • Supported by:
    National Natural Science Foundation of China (52125208,52232015);Fundamental Research Funds for the Central Universities of Ministry of Education of China (2022-5-ZD-02)。

摘要: 为了对交通流建模研究和高级辅助驾驶开发等提供可靠跟驰行为支持,本文针对同一位驾驶人个体内部发生的从正常到异常的跟驰行为模式的转变,提出一种以Transformer深度学习模型为基础的驾驶人跟驰行为内在异质性预测和建模方法。本文基于超过20万km的大规模自然驾驶实验,首先,利用对驾驶人的全要素长期行为观测,为 41 位驾驶人建立基线模型,完成3194次驾驶人内在异质性事件识别与提取;其次,设计基于Transformer多头自注意力机制的深度学习预测器,实现对驾驶人内在异质性事件的准确预测。结果表明,预测器在跟驰内在异质性三分类时间点预测的F1分数(F1-Score)相较于长短时记忆网络表现更优,达到了87.13%,基于预测结果的动态跟驰参数切换可以降低21.08%的驾驶行为建模误差。研究结果有助于更加准确地重现驾驶人跟驰行为,进一步提高交通流仿真精度和高级辅助驾驶控制策略拟人化水平。

关键词: 交通工程, 驾驶人内在异质性, Transformer模型, 跟驰行为, 自注意力机制

Abstract: To provide reliable support for car-following behavior in traffic flow modeling research and advanced driving assistance systems, this study proposes a method for predicting and modeling the intrinsic heterogeneity of driver following behavior based on the Transformer deep learning model and considers individual driver's behavior changes in the car-following process. This study is based on a large-scale naturalistic driving experiment, which involved over 200000 kilometers of naturalistic driving records. First, the baseline models are developed using longterm behavioral observations of 41 drivers, and 3194 intra-driver heterogeneity events are identified and extracted according to the baseline model. Further, a deep learning predictor based on the Transformer multi-head self-attention mechanism is designed to accurately predict intra-driver heterogeneity events of drivers. The results show that the predictor performs better than the long short-term memory network in predicting the three-class time points of carfollowing intra-driver heterogeneity, with an F1 score of 87.13%. Based on prediction results, dynamic car-following parameter switching can reduce the driving behavior modeling error by 21.08%. The research results help to understand the behavioral response mechanism of drivers, and further improve the accuracy of traffic flow simulation and the design of personalized control strategies.

Key words: traffic engineering, intra-driver heterogeneity, Transformer model, car-following behavior, self-attention mechanism

中图分类号: