[1]周浪雅,王亦乐,谢余晨,等.站城融合背景下高速铁路综合枢纽短时客流预测研究[J].铁道学报,2023,45
(4): 1-7. [ZHOULY, WANGYL, XIEYC, et al.
Prediction of short-termpassenger flow of high-speed
railway integrated passenger hub under station-city
integration[J]. Journal of the China Railway Society,
2023,45(4):1-7.]
[2]李洁,彭其渊,文超.基于LSTM深度神经网络的高速铁路短期客流预测研究[J].系统工程理论与实践,
2021, 41(10): 2669-2682. [LI J,PENGQY,WENC.
Short term passenger fow prediction of high speed
railwaybasedonLSTMdeepneuralnetwork[J].Systems
Engineering-Theory & Practice, 2021,41(10):2669
2682.]
[3]何必胜,朱永俊,陈路锋,等.基于时空图神经网络的高速铁路车站短期客流预测方法[J].铁道学报,2022,
44(9): 1-8. [HEBS, ZHUYJ, CHENLF, et al.A
spatial-temporal graph neural network forpredictionof
short-termpassenger flow athigh-speedrailwaystation
[J]. Journal of the ChinaRailwaySociety,2022,44(9):
1-8.]
[4] FENGX,ZHANGH,GANT, et al.Randomcoefficient
modeling research on short-term forecast ofpassenger
flowintoanurbanrail transitstation[J].Transport,2016,
31(1):94-99.
[5]李夏苗,曹尧谦,王慧晶,等.基于模糊预测的高速铁路客流OD表的推算方法[J].交通运输系统工程与信息,2014,14(5):93-99. [LIXM,CAOYQ,WANGHJ,
et al. An estimationmethod of passengerOD flows of
high-speed railway network based onfuzzypredication
[J]. Journal of TransportationSystemsEngineering and
InformationTechnology,2014,14(5):93-99.]
[6] YANG F, SHUAIC, QIANQ, et al. Predictabilityof
short-termpassengers' originanddestinationdemandsin
urbanrail transit[J]. Transportation, 2023, 50(6): 2375
2401.
[7] LVS,WANGK, YANGH,etal.Anorigin-destination
passenger flowpredictionsystembasedonconvolutional
neural network and passenger source-based attention
mechanism[J]. Expert SystemswithApplications, 2024,
238:121989.
[8]陈方遒,景云,郭思冶.基于旅客出行选择特征的高速铁路浮动定价策略研究[J].铁道学报,2022,44(6):11
17. [CHENFQ, JINGY,GUOSY.Researchonhigh
speed railway floating pricing strategy based on
passenger travel behavior characteristics[J]. Journal of
theChinaRailwaySociety,2022,44(6):11-17.]
[9]李和壁,梁家健,高扬.基于MLPs-dynFWA模型的高速铁路短时客流预测方法研究[J].铁道运输与经济,
2021, 43(6): 28-36. [LI H B, LIANG J J, GAO Y. Short
term passenger flow prediction of high speed railway
based on MLPs-dynFWA model[J]. Railway Transport
and Economy, 2021, 43(6): 28-36.]
[10] BAPAUME T, COME E, AMELI M, et al. Forecasting
passenger flows and headway at train level for a public
transport
line:
Focus on atypical situations[J].
Transportation Research Part C: Emerging Technologies,
2023, 153: 104195.
[11] XUE Q, ZHANG W, DING M, et al. Passenger flow
forecasting approaches for urban rail transit: A survey[J].
International Journal of General Systems, 2023, 52(8):
919-947.
[12] CHEN Y, SHA Y, ZHU X, et al. Prediction of Shanghai
metro line 16 passenger flow based on time series
analysis[J]. Operations Research and Fuzziology, 2016, 6
(1): 15-26.
[13] CAO L, LIU S G, ZENG X H, et al. Passenger flow
prediction based on particle filter optimization[J].
Applied Mechanics and Materials, 2013, 373: 1256
1260.
[14] JIAO P, LI R, SUN T, et al. Three revised Kalman
filtering models for short-term rail transit passenger flow
prediction[J]. Mathematical Problems in Engineering,
2016, 2016: 9717582.
[15] ZHANG J, CEN F, CUI Z, et al. Deep learning
architecture for short-term passenger flow forecasting in
urban rail transit[J]. IEEE Transactions on Intelligent
Transportation Systems, 2020, 22(11): 7004-7014.
[16] KE J, ZHENG H, YANG H, et al. Short-term forecasting
of passenger demand under on-demand ride services: A
spatio-temporal
deep
learning
approach[J].
Transportation Research Part C: Emerging Technologies,
2017, 85: 591-608.
[17] WEN K, ZHAO G, HE B, et al. A decomposition-based
forecasting method with transfer learning for railway
short-term passenger flow in holidays[J]. Expert Systems
with Applications, 2022, 189: 116102.
[18] SUN Y, JIANG Z, GU J, et al. Analyzing high speed rail
passengers' train choices based on new online booking
data in China[J]. Transportation Research Part C:
Emerging Technologies, 2018, 97: 96-113.
[19] 程谦,杨光,胡启洲.基于混合Logit模型的旅客对短途高速铁路列车选择行为[J].中国铁道科学,2021,42
(2): 183-192. [CHENG Q, YANG G, HU Q Z. Passenger
choice behaviors for short-haul HSR trains based on
mixed Logit model [J]. China Railway Science, 2021, 42
(2): 183-192.]
[20] 刘佳伟,杨信丰,马艺轩.突发事件下考虑旅客时间价值的列车开行方案研究[J]. 铁道科学与工程学报,
2023, 20(5): 1598-1610. [LIU J W, YANG X F, MA Y
X. Train operation plan considering the time value of
passengers under emergencies[J]. Journal of Railway
Science and Engineering, 2023, 20(5): 1598-1610.]
[21] 夏铭泽, 李博,张博,等.基于均衡性和能力利用的高速铁路标杆车运行图编制方法研究[J/OL].铁道科学与工程学报, (2023-12-21) [2024-02-02]. https://doi.
org/10.19713/j.cnki.43-1423/u.T20231426. [XIA M Z,
LI B, ZHANG B. Research on benchmark train working
diagram based on equilibrium and capacity utilization
[J/OL]. Journal of Railway Science and Engineering,
(2023-12-21) [2024-02-02]. https://doi.org/10.19713/
j.cnki.43-1423/u.T20231426.]
[22] DIETTERICH T G. Ensemble learning[J]. The Handbook
of Brain Theory and Neural Networks, 2002, 2(1): 110
125.
[23] CHEN T, GUESTRIN C. Xgboost: A scalable tree
boosting system[C]//New York: In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.
[24] KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly
efficient gradient boosting decision tree[C]//San Diego:
Neural Information Processing Systems Foundation, Inc.
Advances in Neural Information Processing Systems 30
(NIPS 2017). 2017.
[25] PROKHORENKOVA L, GUSEV G, VOROBEV A, et al.
CatBoost: Unbiased boosting with categorical features
[C]//Montréal: 32nd Conference on Neural Information
Processing Systems, 2017.
[26] LUNDLBERG S M, LEE S I. A unified approach to
interpreting
model
predictions[C]//
New York:
Proceedings of the 31st International Conference on
Neural Information Processing Systems, 2017.
|